Advertisement

Wuhan University Journal of Natural Sciences

, Volume 6, Issue 3, pp 649–651 | Cite as

Non-normal hasemann boundary value problem

  • Cai Hao-tao
  • Du Jin-yuan
Article
  • 20 Downloads

Abstract

We will discuss the non-normal Hasemann boundary value problem:\(\Phi ^ + (\alpha (t)) = \frac{{\Pi _1 (t)}}{{\Pi _2 (t)}}G(t)\Phi ^ - (t) + g(t) t \in L\) we may find these results are coincided with those of normal Hasemann boundary value problem and non-normal Riemann boundary value problem.

Key words

non-normal positive transformation canonical function 

CLC number

O 174. 41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lu Jian-ke.Boundary Value Problem for Analysis Function. Singapore: World Scientific, 1993.Google Scholar
  2. [2]
    Muskhelishvili N I,Singular Integral Equations. Groningen. Noordhoff, 1953.MATHGoogle Scholar
  3. [3]
    Lu Jian-ke.The Selected Works of Analysis Function and Singular Integral Equations. Wuhan: Wuhan University Press, 1998(Ch).Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Cai Hao-tao
    • 1
  • Du Jin-yuan
    • 1
  1. 1.College of Mathematics and StatisticsWuhan UniversityWuhanChina

Personalised recommendations