Wuhan University Journal of Natural Sciences

, Volume 5, Issue 3, pp 307–311 | Cite as

Quantum size effect of the magnetism of an electron in a metal layer of the layered compounds M/I/M/I…

  • Shen Guo-jin
  • Wang Xin-min
  • Huang Xin-tang
  • Wang You-qing


The energies and the magnetization of an electron in a piece of metal in the structure of Metal/Insulator/Metal/Insulator… (M/I/M/I…), in a magnetic field, at high temperature, and in range of quantum size thickness of the piece of metal layer have been obtained. The results show that when the thickness of the metal layer becomes smaller, the orbital magnetism of the charged particles which collide with the wall of the metal layer is to vary from diamagnetism to paramagnetism. The smaller the thickness of the metal layer becomes, the more particles will collide with the boundary of the metal layer, and then the paramagnetism becomes stronger. Finally, when the thickness of the metal layer becomes very small (<100 nm), all of the orbital diamagnetism will reverse to paramagnetism, and then the paramagnetization will be almost a maximum constant.

Key words

magnetization layered compounds quantum size effect 

CLC number

O 482. 54 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Landau L. Diamagnetismus der Metalle.Z Physik, 1930,64: 629–637.CrossRefGoogle Scholar
  2. [2]
    Aharonov Y, Bohm D. Significance of Electromagnetic Potentials in the Quantum Theory.Phys Rev, 1959,115: 485–491.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Tonoura A, Matsuda T, Suzuki R,et al. Observation of Aharonov-Bohm Effect by Electron Holography.Phys Rev Lett, 1982,48: 1443–1446.CrossRefGoogle Scholar
  4. [4]
    Montambaux G, Bouchiat H, Sigeti D,et al. Persistent Currents in Mesoscopic Metallic Rings Ensemble Average.Phys Rev, 1990, B42: 7647–7650.Google Scholar
  5. [5]
    Cheung H F, Riedel E K, Gefen Y. Persistent Currents in Mesoscopic Rings and Cylinders.Phys Rev Lett, 1989,62: 587–590.CrossRefGoogle Scholar
  6. [6]
    Buttiker M, Imry Y, Landauer R. Josephson Behavior in Small Normal One-Dimentonal Rings.Phys Lett, 1983, A96:365–369.CrossRefGoogle Scholar
  7. [7]
    Van Wees B J, Willems E M M, Harmans C J P M,et al. Anomalous Integer Quantum Hall Effect in the Ballitic Regime With Quantum Point Contacts.Phys Rev Lett, 1989,62: 1181–1184.CrossRefGoogle Scholar
  8. [8]
    Martin T, Feng S. Suppression of Scattering in Electron Transport in Mesoscopic Quantum Hall Systems.Phys Rev Lett, 1990,64:1971–1974.CrossRefGoogle Scholar
  9. [9]
    Sols F, Macucci M, Ravaioli U,et al. On the Possibility of Transistor Action Based on Quantum Interference Phenomena.Appl Phys Lett, 1989,54: 350–352.CrossRefGoogle Scholar
  10. [10]
    Datta S, Melloch M R, Bandyopadhyay S,et al. Novel Interference Effects Between Paralled Quantum Wells.Phys Rev Lett, 1985,55: 2344–2347.CrossRefGoogle Scholar
  11. [11]
    Von Helmout R, Wecker J, Holzapfel B,et al. Giant Negative Magnetoresistance in Perovskitelike La2/3 Ba1/3 MnOx FerromaGnetic Films.Phys Rev Lett, 1993,71: 2331–2333.CrossRefGoogle Scholar
  12. [12]
    Jin S, Tiefel T H, McCormack M,et al. Thousandfold Change in Resistivity in Magnetoresistive La−Ca−Mn−O films.Science, 1994,264:413–415.CrossRefGoogle Scholar
  13. [13]
    Chahara K, Ohno T, Kasai M,et al. Magnetoresistance in Magnetic Manganese Oxide With Intrinsic Antiferromagnetic Spin StructureAppl Phys Lett, 1993,63 1990–1992.CrossRefGoogle Scholar
  14. [14]
    Moritomo Y, Asamitsu A, Kuwahara H,et al. Giant Magnetoresistance of Manganese Oxides With a Layered Peroviskite Stucture.Nature, 1996,380: 141–144.CrossRefGoogle Scholar
  15. [15]
    Kallin C, Barlinsky A J. Comment on “Normal Tunneling and Normal Transport: Dignostics for the Resonating-Valence-Bond State”Phys Rev Lett, 1988,60: 2556–2558.CrossRefGoogle Scholar
  16. [16]
    Uher C, Peacor S D, Kaiser A B. Thermoeletric Power ofBa1−x KxBiO3.Phys Rev, 1991,B43: 7955–7957.Google Scholar
  17. [17]
    Eagles D M. Concentrations and Mobilities of Holes and Electrons in a Crystal of a 90K Oxide Superconductor from Analysis of ab-Plane Resistivity and Hall Data.Solid State Commun, 1989,69: 229–231.CrossRefGoogle Scholar
  18. [18]
    Kubo Y, Kondo T, Shimakawa Y,et al. Superconductor-to-Metal-Transition Caused by Oxygen Nonstoichiometry in TLSr2CaCu2O7−xHaving a Cu−O Pyramidal Layer.Phys Rev, 1992,B45: 5553–5556.Google Scholar
  19. [19]
    Anderson P W, Zou Z. Normal Tunneling and Normal Transport: Diagnostics for the Resonating-Valence-Bond State.Phys Rev Lett, 1988,60: 132–134.CrossRefGoogle Scholar
  20. [20]
    Hagen S J, Peng J L, Li Z Y,et al. In-Plane Transport Properties of Single-Crystals R2−xCexCuO4−y(R=Nd, Sm).Phys Rev, 1991,B43: 13606–13608.CrossRefGoogle Scholar
  21. [21]
    Stormer H L, Lev A F J, Baldwin K W,et al. Normal-State Transport Parameters of Epitaxial Thin Films of YBCO.Phys Rev, 1998,B38: 2472–2475.Google Scholar
  22. [22]
    Chien T R, Wolf D A, Selvamanickam V,et al. Thermoelectric Power of YBCOPhys Rev Lett, 1991,66: 1098–1090.CrossRefGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • Shen Guo-jin
    • 1
  • Wang Xin-min
    • 2
  • Huang Xin-tang
    • 3
  • Wang You-qing
    • 4
  1. 1.Department of PhysicsWuhan University of Automobile IndustryWuhanChina
  2. 2.Department of PhysicsXiaogan Teachers' CollegeXiaogan, HubeiChina
  3. 3.Department of PhysicsCentral China Normal UniversityWuhanChina
  4. 4.The State Key Lab of Laser TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations