Wuhan University Journal of Natural Sciences

, Volume 3, Issue 4, pp 433–439 | Cite as

First principles study-D88 lattice stability of low-rate metalloid Ti5Si3

  • Hong Lihua
  • Ye Yiying
  • Gu Huawei


First principles study is reported for the band structures, site and angular momentum decomposed density of states, and the electronic charge density distributions in high-temperature structural materials D88-Ti5Si3 with the addition of low-rate metalloid: carbon, boron, nitrogen and oxygen. It shows that how the addition of metalloid atoms can stabilize Nowotny phase of Ti5Si3 from the viewpoint of the electron structure.

Key words

D88 Ti5Si3 DOS electronic seructure phase stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nowotny H.Electronic Structure and Alloy Chemistry of the Transition Elements. New York: Plenum Press, 1963, 179Google Scholar
  2. 2.
    Meschter P J, Schwartz D S. Silicide-matrix materials for high-temperature applications.Journal of Metals, 1989,41(11): 52–55Google Scholar
  3. 3.
    Frommeyer Georg, Rosenkranz Rainer, Luecke Chrita. Microstructure and properties of the refractory intermetallic Ti5Si3 Compound and the unidirectionally solidified eutectic Ti−Ti5Si3 alloy.Zeitschrift fur Metallkunde, 1990,81 H(5): 307Google Scholar
  4. 4.
    Rosenkrom Z R, Frommeyer G, Smarsly W. Microstructure and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds.Mater Sci (Eng), 1992, A152: 288–294CrossRefGoogle Scholar
  5. 5.
    Quakerndat J, Visser J W. Lattic dimensions of low-rate metalloid-stabilized Ti5Si3.High Temperatures-High Pressures, 1974,6: 515–517Google Scholar
  6. 6.
    Tsuyoshi Kaijitani, Tomohiro Kawase, Kazuyoshi Yamada,et al. Site occupation and local vibration of hydrogen isotopes in hexgonal Ti5Si3H (D)1−x.Transactions of the Japan Institute of Metals, 1986,27 (9): 639–647Google Scholar
  7. 7.
    Ekman M, Ozolins V. Electronic structure and bonding properties of Titanium silicides.Phys Rev B, 1998,57: 4419CrossRefGoogle Scholar
  8. 8.
    Adersen O K. Linear methods in band theory.Phys Rev B, 1975,12: 3060CrossRefGoogle Scholar
  9. 9.
    David J S. Band structures and their interpretation.Intermetallic Compounds, 1994,1: 127Google Scholar
  10. 10.
    McMahan A K. Interstitial-sphere linear muffin-tin orbital structural calculations for C and Si.Phys Rev B, 1984,30: 5835CrossRefGoogle Scholar
  11. 11.
    Wang D S.User’s Manual of LAPW Software Package 1996 Version. Edited by Laboratory for Surface Physics of the Institute of Physics. Beijing: Academia Sinica, 1996Google Scholar
  12. 12.
    Garcia E, Corbett J D. Chemistry of polar intermetallic compounds, Study of two Zr5Si3 phases, host for a diverse interstitial chemistry.Jnorganic Chemistry, 1988,27(13): 2553Google Scholar
  13. 13.
    Gelatt C D, Williams A R, Moruzzi V L. Theory of bonding of transition metals to nontransition metals.Phys Rev B, 1983,7: 2005CrossRefGoogle Scholar
  14. 14.
    Liu H J, Ye Y Y. Electronic structure and stability of Ti-based B2 shape-memory alloys: by LMTO-ASA.Solid State Communication, 1998,106(4): 197–202CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Hong Lihua
    • 1
  • Ye Yiying
    • 1
  • Gu Huawei
    • 2
  1. 1.Department of Analysis and Measurement ScienceWuhan UniversityWuhanChina
  2. 2.Henan Basic and Applied Science Research InstituteZhengzhou UniversityZhengzhouChina

Personalised recommendations