Wuhan University Journal of Natural Sciences

, Volume 3, Issue 3, pp 293–296 | Cite as

Real-space renormalization group approach of the Potts model on the octagonal quasi-periodic tiling

  • Xiong Gang
  • Zhang Zhehua
  • Tian Decheng


A one-step real-space renormalization group (RSRG) transformation is used to study the ferromagnetic (FM) Potts model on the two-dimensional (2D) octagonal quasi-periodic tiling (OQT). The critical exponents of the correlation length in theq=1,2,3,4 cases and the crtitical surface of the Ising model are obtained. The results are discussed by comparing with previous results on the OQT and the square lattice (SQL).

Key words

renormalization quasi-periodic critical exponent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Onsager L. Crystal statistics I: a two-dimensional model with an order-disorder transition.Phys Rev, 1944,65:117MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Shechtman D. Metallic phase with long-range orientational order and no translational symmetry.Phys Rev Lett, 1984,53:1951CrossRefGoogle Scholar
  3. 3.
    Sorensen E S. Ising model on Penrose lattices: boundary conditions.Phys Rev, 1991,B44:9271Google Scholar
  4. 4.
    Doroba A. Equivalence of the Ising model on the two-dimensional Penrose and two-dimensional regular lattice.Acta Physica Pol, 1989,A76:949MathSciNetGoogle Scholar
  5. 5.
    Ledue D. Static critical behavior of the ferromagnetic Ising model on the quasiperiodic octagonal tiling.Phys Rev, 1995,B51:12523Google Scholar
  6. 6.
    Ledue D. Static critical behavior of a weakly-frustrated Ising model on the octagonal tiling.Phys Rev, 1995, B53:3312Google Scholar
  7. 7.
    Tracy C A. Universality classes of some aperiodic Ising models.J Phys, 1988, A21:L603MathSciNetGoogle Scholar
  8. 8.
    Wilson W G, Vause C A. Ferromagneticq=4,5 Potts Models on the two-dimensional Penrose and square lattices.Phys Rev, 1989, B39:4651CrossRefGoogle Scholar
  9. 9.
    Sire C, Bellisard J. Renormalization group for the octagonal quasi-periodic tiling.Europhys Lett, 1990,11: 439CrossRefGoogle Scholar
  10. 10.
    Tsallis C, de Magalhaes A C N. Pure and random Potts-like models.Phys Rept, 1996,268:305CrossRefGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Xiong Gang
    • 1
  • Zhang Zhehua
    • 1
  • Tian Decheng
    • 1
  1. 1.Department of PhysicsWuhan UniversityWuhanChina

Personalised recommendations