Genes & Nutrition

, Volume 1, Issue 3–4, pp 143–158 | Cite as

Tools to evaluate estrogenic potency of dietary phytoestrogens:A consensus paper from the EU Thematic Network “Phytohealth” (QLKI-2002-2453)

  • N. M. Saarinen
  • C. Bingham
  • S. Lorenzetti
  • A. Mortensen
  • S. Mäkelä
  • P. Penttinen
  • I. K. SØrensen
  • L. M. Valsta
  • F. Virgili
  • G. Vollmer
  • A. Wärri
  • O. Zierau


Phytoestrogens are naturally occurring plantderived polyphenols with estrogenic potency. They are ubiquitous in diet and therefore, generally consumed. Among Europeans, the diet is rich in multiple putative phytoestrogens including flavonoids, tannins, stilbenoids, and lignans. These compounds have been suggested to provide beneficial effects on multiple menopause-related conditions as well as on development of hormone-dependent cancers, which has increased the interest in products and foods with high phytoestrogen content. However, phytoestrogens may as well have adverse estrogenicity related effects similar to any estrogen. Therefore, the assessment of estrogenic potency of dietary compounds is of critical importance. Due to the complex nature of estrogenicity, no single comprehensive test approach is available. Instead, several in vitro and in vivo assays are applied to evaluate estrogenic potency. In vitro estrogen receptor (ER) binding assays provide information on the ability of the compound to I) interact with ERs, II) bind to estrogen responsive element on promoter of the target gene as ligand-ER complex, and III) interact between the co-activator and ERs in ligand-dependent manner. In addition, transactivation assays in cells screen for ligand-induced ERmediated gene activation. Biochemical in vitro analysis can be used to test for possible effects on protein activities and E-screen assays to measure (anti)proliferative response in estrogen responsive cells. However, for assessment of estrogenicity in organs and tissues, in vivo approaches are essential. In females, the uterotrophic assay is applicable for testing ERa agonistic and antagonistic dietary compounds in immature or adult ovariectomized animals. In addition, mammary gland targeted estrogenicity can be detected as stimulated ductal elongation and altered formation of terminal end buds in immature or peripubertal animals. In males, Hershberger assay in peri-pubertal castrated rats can be used to detect (anti)androgenic/ (anti)estrogenic responses in accessory sex glands and other hormone regulated tissues. In addition to these short-term assays, sub-acute and chronic reproductive toxicity assays as well as two-generation studies can be applied for phytoestrogens to confirm their safety in long-term use. For reliable assessment of estrogenicity of dietary phytoestrogens in vivo, special emphasis should be focused on selection of the basal diet, route and doses of administration, and possible metabolic differences between the species used and humans. In conclusion, further development and standardization of the estrogenicity test methods are needed for better interpretation of both the potential benefits and risks of increasing consumption of phytoestrogens from diets and supplements.

Key words

Diet Estrogenicity Isoflavones Lignans Phytoestrogens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adlercreutz, H., Heinonen, S.M., and Penalvo-Garcia, J. (2004) Phytoestrogens, cancer and coronary heart disease.Biofactors 22, 229–236.PubMedGoogle Scholar
  2. Ariazi, E.A. and Jordan, V.C. (2006) Estrogen-related receptors as emerging targets in cancer and metabolic disorders.Current Topics in Medicinal Chemistry 6, 181–193.PubMedGoogle Scholar
  3. Ashby, J. (2001) Increasing the sensitivity of the rodent uterotrophic assay to estrogens with particular reference to bisphenolA.Environmental Health Perspectives 109, 1091–1094.PubMedGoogle Scholar
  4. Ashby, J., Lefevre, P.A., Tinwell, H., Odum, J., and Owebs, W. (2004) Testosterone-stimulated weanlings as an alternative to castrated male rats in the Hershberger ani- androgenic assay.Regulatory Toxicology and Pharmacology 39, 229–238.PubMedGoogle Scholar
  5. Bolger, R., Wiese, T.E., Ervin, K., Nestich, S., and Checovich, W. (1998) Rapid screening of environmental chemicals for estrogen receptor binding capacity.Environmental Health Perspectives 106, 551–557.PubMedGoogle Scholar
  6. Boyer, M., Poujol, N., Margeat, E., and Royer, C.A. (2000) Quantitative characterization of the interaction between purified human estrogen receptor alpha and DNA using fluorescence anisotropy.Nucleic Acids Research 28, 2494–2502.PubMedGoogle Scholar
  7. Branca, F, and Lorenzetti, S. (2005) Health effects of phytoestrogens.Forum Nutrition 57, 100–111.Google Scholar
  8. Brown, N.M., and Setchell, K.D. (2001) Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones.Laboratory Investigation 81, 735–747.PubMedGoogle Scholar
  9. Cos, P., De Bruyne, T., Apers, S., Vanden Berghe, D., Pieters, L., and Vlietinck, A. (2003) Phytoestrogens: recent developments.Planta Medica 69, 589–599.PubMedGoogle Scholar
  10. COT Report (2003). Phytoestrogens and Health. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment; Working Group on Phytoestrogens and Health; Chairmen: Hughes I and Woods HF. The Food Standards Agency. wg_phyto.Google Scholar
  11. Cotroneo, M.S., Wang, J., Eltoum, I.-E.A., and Lamartiniere, C.A. (2001) Sex steroid receptor regulation by genistein in the prepubertal rat uterus.Molecular and Cellular Endocrinology 173, 135–145.PubMedGoogle Scholar
  12. Couse, J.F., and Korach, K.S. (1999) Reproductive phenotypes in the estrogen receptor-alpha knockout mouse.Annual Endocrinology (Paris) 60, 143–148.Google Scholar
  13. Couse, J.F., Yates, M.M., Deroo, B.J., and Korach, K.S. (2005) Estrogen receptor beta augments gonadotropin-induced granulose cell differentiation and pre-ovulatory response to gonadotropins.Endocrinology 146, 3247–3262PubMedGoogle Scholar
  14. Couse, J.F., Curtis, H.S., and Korach, K.S. (2000) Receptor null mice reveal contrasting roles for estrogen receptor α and β in reproductive tissues.Journal of Steroid Biochemistry and Molecular Biology 74, 287–296.PubMedGoogle Scholar
  15. Curtis, S.W., and Korach, K.S. (1990) Uterine estrogen receptor interaction with estrogen-responsive DNA sequences in vitro: effects of ligand binding on receptor-DNA complexes.Molecular Endocrinology 4, 276–286.PubMedGoogle Scholar
  16. Dana, S.L., Hoener, P.A., Wheeler, D.A., Lawrence, C.B., and McDonnell, D.P. (1994) Novel estrogen response elements identified by genetic selection in yeast are differentially responsive to estrogens and antiestrogens in mammalian cells.Molecular Endocrinology 8, 1193–1207.PubMedGoogle Scholar
  17. Degen, G.H., Janning, P., Diel, P., and Bolt, H.M. (2002) Estrogenic isoflavones in rodent diets.Toxicology Letters 128, 145–157.PubMedGoogle Scholar
  18. de Kleijn, M.J., van der Schouw, Y.T., Wilson, P.W., Adlercreutz, H., Mazur, W., Grobbee, D.E., and Jacques, EE (2001) Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framinghamstudy (1–4).Journal of Nutrition 131, 1826–1832.PubMedGoogle Scholar
  19. Diel, P., Smolnikar, K., Schulz, T., Laudenbach-Leschowski, U., Michna, H., and Vollmer, G. (2001) Phytoestrogens and carcinogenesis differential effects of genistein in experimental models of normal and malignant rat endometrium.Human Reproduction 16, 997–1006.PubMedGoogle Scholar
  20. Diel, P., Thomae, R.B., Caldarelli, A., Schmidt, S., Laudenbach-Leschowski, U., and Vollmer, G. (2004) The differential ability of the phytoestrogen genistein and of estradiol to induce uterine weight and proliferation in the rat is associated with a substance specific modulation of uterine gene expression.Molecular and Cellular Endocrinology 221, 21–32.PubMedGoogle Scholar
  21. Dupont, S., Krust, A., Gansmuller, A., Dierich, A., Chambon, P., and Mark, M. (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERα) and beta (ERβ) on mouse reproductive phenotypes.Development 127, 4277–4291.PubMedGoogle Scholar
  22. Emmen, J.M., Couse, J.F., Elmore, S.A., Yates, M.M., Kissling, G.E., and Korach, K.S. (2005) In vitro growth and ovulation of follicles from ovaries of estrogen receptors (ER) alpha and ER beta null mice indicates a role for ER beta in follicular maturation.Endocrinology 146, 2817–2826PubMedGoogle Scholar
  23. Frasor, J., Barnett, D.H., Danes, J.M., Hess, R., Parlow, A.F., and Katzenellenbogen, B.S. (2003) Response-specific and ligand dosedependent modulation of estrogen receptor (ER) alpha activity by ER beta in the uterus.Endocrinology 144, 3159–3166.PubMedGoogle Scholar
  24. Gee, A.C., Carlson, K.E., Martini, P.G., Katzenellenbogen, B.S., and Katzenellenbogen, J.A. (1999) Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor.Molecular Endocrinology 13, 1912–1923.PubMedGoogle Scholar
  25. Gelbke, H.P., Kayser, M., and Poole, A. (2004) OECD test strategies and methods for endocrine disruptors.Toxicology 205, 17–25.PubMedGoogle Scholar
  26. Giguere, V. (2002) To ERR in the estrogen pathway.Trends in Endocrinology and Metabolism 13, 220–225.PubMedGoogle Scholar
  27. Grace, P.B., Taylor, J.I., Low, Y.-L., Luben, R.N., Mulligan, A.A., Botting, N.P., Dowsett, M., Welch, A.A., Khaw, K.T., Wareham, N.J., Day, N.E., and Bingham, S.A. (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European Prospective Investigation of Cancer and Nutrition-Norfolk.Cancer Epidemiology Biomarkers and Prevention 13, 698–708.Google Scholar
  28. Gray, L.E., Ostby, J., Sigmon, R., Ferrell, J., Rehnberg, G., Linder, R., Cooper, R., Goldman, J., and Laskey, J. (1988) The development of a protocol to assess reproductive effects of toxicants in the rat.Reproductive Toxicology 2, 281–287.PubMedGoogle Scholar
  29. Gray, L.E., Ostby, J., Wilson, V., Lambright, C., Bobseine, K., Hartig, P., Hotchkiss, A., Wolf, C., Furr, J., Price, M., Parks, L., Cooper, R.L., Stoker, T.E., Laws, S.C., Degitz, S.J., Jensen, K.M., Kahl, M.D., Korte, J.J., Mäkynen, E.A., Tietge, J.E., and Ankley, G.T. (2002) Xenoendocrine disrupters-tiered screening and testing. Filling key datagaps.Toxicology 181–182, 371–382.PubMedGoogle Scholar
  30. Harris, H.A., Katzenellenbogen, J.A., and Katzenellenbogen, B.S. (2002) Characterization of the biological roles of the estrogen receptors, ER alpha and ER beta, in estrogen dependent tissues in vivo through the use of an ER alpha-selective ligand.Endocrinology 143, 4172–4177.PubMedGoogle Scholar
  31. Harris, H.A., Albert, L.M., Leathurby, Y., Malamas, M.S., Mewshaw, R.E., Miller, C.P., Kharode, Y.P., Marzolf, J., Komm, B.S., Winneker, C.P., Frail, D.E., Henderson, R.A., Zhu, Y., Keith, J.C. jr (2003) Evaluation of an estrogen receptor-beta agonist in animal models of human disease.Endocrinology 144, 4241–4249.PubMedGoogle Scholar
  32. Hedelin, M., Klint, Å., Chang, E.T., Bellocco, R., Johansson, J.-E., Andersson, S.-O., Heinonen, S.-M., Adlercreutz, H., Adami, H.-O., Grönberg, H., and Augustsson-Bälter, K. (2006) Dietary phytoestrogen, serum enterolactone and risk of prostate cancer: the Cancer Prostate Sweden Study (Sweden).Cancer Causes and Control 17, 169–180.PubMedGoogle Scholar
  33. Hegele-Hartung, C., Siebel, P., Peters, O., Kosemund, D., Müller, G., Hillisch, A., Walter, A., Kraetzschmar, J., and Fritzemeier, K.H. (2004) Impact ofistotype-selective estrogen receptor agonists on ovarian function.Proceedings of the National Academy of Sciences ofthe United States of America 101, 5129–5134.Google Scholar
  34. Heinonen, S., Nurmi, T., Luikkonen, K., Poutanen, K., Wähälä, K., Takeshi, D., Nishibe, S., and Adlercreutz, H. (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.Journal of Agriculture and Food Chemistry 49, 3178–3186.Google Scholar
  35. Helguero, L.A., Faulds, M.H., Gustafsson, J.Å., and Haldosén, L.A. (2005) Estrogen receptor alpha (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of normal murine mammary epithelial cell line HC11.Oncogene 24, 6605–6616.PubMedGoogle Scholar
  36. Hewitt, S.C., Deroo, B.J., Hansen, K., Collins, J., Grissom, S., Afshari, C.A., and Korach, K.S. (2003) Estrogen receptordependent genomic responses in the uterus mirror the biphasic physiological response to estrogen.Molecular Endocrinology 17, 2070–2083.PubMedGoogle Scholar
  37. Hilakivi-Clarke, L., Cho, E., de Assis, S., Olivo, S., Ealley, E., Bouker, K.B., Welch, J.N., Khan, G., Clarke, R., and Cabanes, A. (2001) Maternal and prepubertal diet, mammary development and breast cancer risk.Journal of Nutrition 131, 154S-157S.PubMedGoogle Scholar
  38. Hillisch, A., Peters, O., Kosemund, D., Müller, G., Walter, A., Schneider, B., Peddersen, G., Elger, W., and Fritzemeier, K.H. (2004) Dissecting physiological roles of estrogen receptor α and α with potent selective ligands from structure based design.Molecular Endocrinology 18, 1599–1609.PubMedGoogle Scholar
  39. Horard, B., and Vanacker, J.M. (2003) Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand.Journal of Molecular Endocrinology 31, 349–357.PubMedGoogle Scholar
  40. Horn-Ross, P.L., Lee, M., John, E.M., and Koo, J. (2000) Sources of phytoestrogen exposure among non-Asian women in California, USA.Cancer Causes Control 11, 299–302.PubMedGoogle Scholar
  41. Horn-Ross, P.L., John, E.M., Lee, M., Stewart, S.L., Koo, J., Sakoda, L.C., Shiau, A.C., Goldstein, J., Davis, P., and Perez-Stable, E.J. (2001) Phytoestrogen consumption and breast cancer risk in a multiethnic population: the Bay Area Breast Cancer Study.American Journal of Epidemiology 154, 434–441.PubMedGoogle Scholar
  42. Hovey, R.C., Trott, J.F., Vonderhaar, B.K. (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology.Journal of Mammary Gland Biology and Neoplasia 7, 17–38PubMedGoogle Scholar
  43. Hyder, S.M., Chiappetta, C., and Stancel, G.M. (1999) Interaction of human estrogen receptors alpha and beta with the same naturally occurring estrogen response elements.Biochemical Pharmacology 57, 597–601.PubMedGoogle Scholar
  44. Jefferson, W.N., Padilla-Banks, E., Clark, G., and Newbold, R.R. (2002) Assessing estrogenic activity of phytochemicals using transcriptional activation and immature mouse uterotrophic responses.Journal of Chromatography B 77, 179–189.Google Scholar
  45. Kang, K.-S., Kim, H.-S., Ryu, D.-Y., Che, J.-H., and Lee, Y.-S. (2000) Immature uterotrophic assay is more sensitive than ovariectomized utrotrophic assay for detection of estrogenicity of p-nonylphenol in Sprague-Dawley rats.Toxicology Letters 11, 109–115.Google Scholar
  46. Kanno, J., Onyon, L., Peddada, S., Ashby, J., Jacob, E., and Owens, W. (2003) The OECD program to validate the rat uterotrophic bioassay. Phase 2: Dose response studies.Environmental Health Perspectives 12, 1530–1549.Google Scholar
  47. Kanno, S., Hirama, S., and Kayano, F. (2004) Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts.Toxicology 203, 211–220.PubMedGoogle Scholar
  48. Keinan-Boker, L., Peeters, P.H.M., Mulligan, A.A., Navarro, C., Slimani, N., and the EPIC Study Group on Soy Consumption (2002) Soy product consumption in 10 European countries: the European Prespective Investigation into Cancer and Nutrition (EPIC) study.Public Health Nutrition 5, 1217–1226.PubMedGoogle Scholar
  49. Kiely, M., Faughnan, M., Wähälä, K., Brants, H., and Mulligan, A. (2003) Phyto-oestrogen levels in foods: the design and construction of the VENUS database.British Journal of Nutrition 89, S19-S23.PubMedGoogle Scholar
  50. Kilkkinen, A., Valsta, L.M., Virtamo, J., Stumpf, K., Adlercreutz, H., and Pietinen, P. (2003) Intake of lignans is associated with serum enterolactone concentration in Finnish men and women.Journal of Nutrition 133, 1830–1833.PubMedGoogle Scholar
  51. Koehler, K.F., Helguero, L.A., Haldosen, L.A., Warner, M., and Gustafsson, J.Å. (2005) Reflections on the discovery and significance of estrogen receptor beta.Endocrine Reviews 26, 465–478.PubMedGoogle Scholar
  52. Korach, K.S. (1979) Estrogen action in the mouse uterus: characterisation of the cytosol and nuclear receptor systems.Endocrinology 104, 1324–1332.PubMedGoogle Scholar
  53. Korach, K.S., Couse, J.F., Curtis, S.W., Washburn, T.F., Lindzey, J., Kombro, K.S., Eddy, E.M., Migliaccio, S., Snedecker, S.M., Lubahn, D.B., Schmoberg, D.W., and Smith, E.P. (1996) Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes.Recent Progress in Hormone Research 51, 159–186.PubMedGoogle Scholar
  54. Kraichely, D.M., Sun, J., Katzenellenbogen, J.A., and Katzenellenbogen, B.S. (2000) Conformational changes and coactivator recruitment by novel ligands for estrogen receptoralpha and estrogen receptor-beta: correlations with biological character and distinct differences among SRC coactivator family members.Endocrinology 141, 3534–3545.PubMedGoogle Scholar
  55. Krege, J.H., Hodgin, J.B., Couse, J.F., Enmark, E., Warner, M., Mahler, J.F., Sar, M., Korach, K.S., Gustafsson, J.Å, and Smithies, O. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor α.Proceedings of the National Academy of Sciences of the United States of America 95: 15677–15682.PubMedGoogle Scholar
  56. Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J.Å. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.Endocrinology 138, 863–870.PubMedGoogle Scholar
  57. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B., and Gustafsson, J.Å. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β.Endocrinology 139, 4252–4263.PubMedGoogle Scholar
  58. Lampe, J.W. (2003) Isoflavonoid and lignan phytoestrogens as dietarybiomarkers.Journal of Nutrition 133, 956S-964SPubMedGoogle Scholar
  59. Laws, S.C., Carey, S., Ferrell, J.M., Bodman, G.J., and Cooper, R.L. (2000) Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats.Toxicology Science 54, 154–167.Google Scholar
  60. Lindberg, M.K., Moverare, S., Skrtic, S., Gao, H., Dahlman-Wright, K., Gustafsson, J.Å., and Ohlsson, C. (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying-yang” relationship between ERalpha and ERbeta in mice.Molecular Endocrinology 17, 203–208.PubMedGoogle Scholar
  61. Linseisen, J., Piller, R., Hermann, S., Chang-Claude, J., and German Case-Control Study (2004) Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case-control study.International Journal of Cancer 110, 284–290.Google Scholar
  62. Lorenzetti, S. (2005) Estrogenic potency and beyond: assays to characterize phytoestrogens. NUTRAfoods,4, 29–44.Google Scholar
  63. Markiewicz, L., Garey, J., Adlercreutz, H., and Gurpide, E. (1993) In vitro bioassays of non-steroidal phytoestrogens.Journal of Steroid Biochemistry and Molecular Biology 45, 399–405.PubMedGoogle Scholar
  64. McDonnell, D.P., Clemm, D.L., Hermann, T., Goldman, M.E., and Pike, J.W. (1995) Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens.Molecular Endocrinology 9, 659–669.PubMedGoogle Scholar
  65. McDonnell, D.P. (1999) The molecular pharmacology of SERMs.Trends Endocrinology and Metabolism 10, 301–311.Google Scholar
  66. Meegan, M.J., and Lloyd, D.G. (2003) Advances in the science of estrogen receptor modulation.Current Medical Chemistry 10, 181–210.Google Scholar
  67. Messina, M. (2002) Brief historical overview of isoflavone research. In: Gilani, G.S. and Anderson, J.J.B. (Eds), Phytoestrogens and Health (AOCS Press), pp.1–31.Google Scholar
  68. Meyers, M.J., Sun, J., Carlson, K.E., Marriner, G.A., Katzenellenbogen, B.S., and Katzenellenbogen, J.A. (2001) Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues.Journal of Medical Chemistry 44, 4230–4251.Google Scholar
  69. Milder, I.E., Feskens, E.J., Arts, I.C., de Mesquita, H.B., Hollman, P.C., and Kromhout, D. (2005a) Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women.Journal of Nutrition 135, 1202–1207.PubMedGoogle Scholar
  70. Milder, I.E., Arts, I.C., van de Putte, B., Venema, D.P., and Hollman, P.C. (2005b) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol.British Journal of Nutrition 93, 393–402.PubMedGoogle Scholar
  71. Moggs, J.G., Ashby, J., Tinwell, H., Lim, F.L., Moore, D.J., Kimber, I., and Orphanides, G. (2004) The need to decide if all estrogens are intrinsically similar.Environmental Health Perspectives 112, 1137–1142.PubMedGoogle Scholar
  72. Mueller, S.O., and Korach, K.S. (2001) Immortalized testis cell lines from estrogen receptor (ER) alpha knock-out and wild-type mice expressing functional Eralpha or Erbeta.Journal of Andrology 22, 652–664.PubMedGoogle Scholar
  73. Mueller, S.O. (2002) Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens.Journal of Chromatography B777, 155–165.Google Scholar
  74. Mueller, S.O., Simon, S., Chae, K., Metzler, M., and Korach, K.S. (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERα) and beta (ERβ) in human cells.Toxicology Science 80, 14–25.Google Scholar
  75. Mäkelä, S., Poutanen, M., Kostian, M.L., Lehtimaki, N., Strauss, L., Santti, R., and Vihko, R. (1998) Inhibition of 17betahydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells.Proceedings Of The Society For Experimental Biology And Medicine 217, 310–316.PubMedGoogle Scholar
  76. Nagel, S.C., vom Saal, F.S., and Welshons, W.V. (1998) The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity.Proceedings Of The Society For Experimental Biology And Medicine 217, 300–309.PubMedGoogle Scholar
  77. Nardulli, A.M., Romine, L.E., Carpo, C., Greene, G.L., and Rainish, B. (1996) Estrogen receptor affinity and location of consensus and imperfect estrogen response elements influence transcription activation of simplified promoters.Molecular Endocrinology 10, 694–704.PubMedGoogle Scholar
  78. Newbold, R.R., Jefferson, W.N., Padilla-Banks, E., Walker, V.R., and Pena, D.S. (2001) Cell response endpoints enhance sensitivity of the immature mouse uterotropic assay.Reproductive Toxicology 15, 245–252PubMedGoogle Scholar
  79. Nikov, G.N., Hopkins, N.E., Boue, S., and Alworth, W.L. (2000) Interaction of dietary estrogens with human estrogen receptors and the effect on estrogen receptor-estrogen response element complex formation.Environmental Health Perspectives 108, 867–872.PubMedGoogle Scholar
  80. Nilsson, S., and Gustafsson, J.Å. (2002) Biological role of estrogen and estrogen receptors.Critical Reviews in Biochemistry and Molecular Biology 37, 1–28.PubMedGoogle Scholar
  81. Nishikawa, J., Saito, K., Goto, J., Dakeyama, F., Matsuo, M., and Nishihara, T. (1999) New screening methods for chemicals with hormonal activities using intercation of nuclear hormone receptor with coactivator.Toxicology and Applied Pharmacology 154, 76–83.PubMedGoogle Scholar
  82. Norris, J.D., Paige, L.A., Christensen, D.J., Chang, C.Y., Huacani, M.R., Fan, D.J., Hamilton, P.T., Fowlkes, D.M., and McDonnell, D.P. (1999) Peptide antagonist of the human estrogen receptor.Science 285, 744–746.PubMedGoogle Scholar
  83. Nutrient Requirements of Laboratory Animals, 1995. 4th Ed., Subcommittee on Laboratory Animal Nutrition, Committee on Animal Nutrition, Board on Agriculture, and National Research Council, s. 176.Google Scholar
  84. Odum, J., Lefevre, P.A., Tittensor, S., Paton, D., Routledge, E.J., Beresford, N.A., Sumpter, J.P., and Ashby, J. (1997) The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay.Regulatory Toxicology and Pharmacology 25, 176–188.PubMedGoogle Scholar
  85. Odum, J., Tinwell, H., Tobin, G., and Ashby, J. (2004) Cumulative dietary energy intake determines the onset of puberty in female rats.Environmental Health Perspectives 112, 1472–1480.PubMedGoogle Scholar
  86. OECD guideline for testing of chemicals No. 415: “One generation reproduction toxicity study”. Adopted 26 May 1983.Google Scholar
  87. OECD gudeline for testing of chemicals No. 416: “Twogeneration reproduction toxicity study”. Adopted 26 May 1983.Google Scholar
  88. Onate, S.A., Tsai, S.Y., Tsai, M.J., and O’Malley, B.W. (1995) Sequenze and characterization of a coactivator for the steroid hormone receptor superfamily.Science 270, 1354–1357.PubMedGoogle Scholar
  89. Paige, L.A., Christensen, D.J., Gron, H., Norris, J.D., Gottlin, E.B., Padilla, K.M., Chang, C.Y., Ballas, L.M., Hamilton, P.T., McDonnell, D.P., and Fowlkes, D.M. (1999) Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta.Proceedings of the National Academy of Sciences of the United States of America 96, 3999–4004.PubMedGoogle Scholar
  90. Pelissero, C., Lenczowski, M.J., Chinzi, D., Davail-Cuisset, B., Sumpter, J.P., and Fostier, A. (1996). Effects of flavonoids on aromatase activity, an in vitro study.Journal of Steroid Biochemistry and Molecular Biology 57, 215–223.PubMedGoogle Scholar
  91. Richert, M.M., Schwertfeger, K.L., Ryder, J.W., and Anderson, S.M. (2000) An atlas of mouse mammary gland development.Journal of Mammary Gland Biology and Neoplasia 5, 227–241.PubMedGoogle Scholar
  92. Riggs, B.L., and Hartmann, L.C. (2003) Selective estrogen-receptor-modulatorsmechanism of action and application to clinical practice.New England Journal of Medicine 348, 618–629.PubMedGoogle Scholar
  93. Ritskes-Hoitinga, M. (2001) The need for defined diets and refined feeding methods.Scandinavian Journal of Laboratory Animal Science 28, 51–54.Google Scholar
  94. Rosenberg Zand, R.S., Jenkins, D.J., Brown, T.J., and Diamandis, E.P. (2002) Flavonoids can block PSA production by breast and prostate cancer cell lines.Clinical Chimica Acta 317, 17–26.Google Scholar
  95. Routledge, E.J., White, R., Parker, M.G., and Sumpter, J.P. (2000) Differential effects of xenoestrogens on activator recruitment by estrogen receptor (ER) alpha and ER beta.Journal of Biological Chemistry 275, 35986–35993.PubMedGoogle Scholar
  96. Rowland, I., Faughnan, M., Hoey, L., Wähälä, K., Williamson, G., and Cassidy, A. (2003) Bioavailabilityofphyto-oestrogens.British Journal of Nutrition 89, S45–58.PubMedGoogle Scholar
  97. Rupp, H., Soller, O., and Simmereli, B. (2000) Bestimmung der isoflavone daidzein und genistein in sohaltigen produkten.Mitteilung Lebensmittel Hygiene 91, 199–223.Google Scholar
  98. Russo, J., and Russo, I.H. (1996) Experimentally induced mammary tumors in rats.Breast Cancer Research and Treatment 39, 7–20.PubMedGoogle Scholar
  99. Russo, J., Lynch, H., and Russo, I.H. (2001) Mammary gland architecture as a determining factor in the susceptibility of the human breast to cancer.Breast Journal 7, 278–291.PubMedGoogle Scholar
  100. Saarinen, N.M., Huovinen, R., Wärri, A., Mäkelä, S.I., Valentin-Blasini, L., Sjöholm, R., Ämmälä, J., Lehtilä, R., Eckerman, C., Collan, Y.U., and Santti, R.S. (2002) Enterolactone inhibits the growth of 7,12-dimethylbenz(a) anthracene-induced mammary carcinomas in the rat.Molecular Cancer and Therapeutics 1, 869–876.Google Scholar
  101. Setchell, K.D., Zimmer-Nechemias, L., Cai, J., and Heubi, J.E. (1998) Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life.American Journal of Clinical Nutrition 68, 1453S-1461S.PubMedGoogle Scholar
  102. Shelby, M.D., Newbold, R.R., Tully, D., Chae, K., and Davis, V.L. (1996) Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays.Environmental Health Perspectives 104, 1296–1300.PubMedGoogle Scholar
  103. Sheng, S., Barnett, D.H., Petz, L.N., Katzenellenbogen, J.A., and Katzenellenbogen, B.S. (2003) Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression.Molecular and Cellular Endocrinology,206, 13–22.PubMedGoogle Scholar
  104. Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A., and Greene, G.L. (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen.Cell 95, 927–937.PubMedGoogle Scholar
  105. Smith, C.L., and O’Malley, B.W. (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators.Endocrinology Reviews 25, 45–71.Google Scholar
  106. Soto, A.M., Sonnenschein, C., Chung, K.L., Fernandez, M.F., Olea, N., and Serrano, F, (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants.Environmental Health Perspectives 103, 113–122.PubMedGoogle Scholar
  107. Soto, A.M., Michaelson, C.L., Prechtl, N.V., Weill, B.C., Sonnenschein, C., Serrano, F., and Olea, N. (1998) Assays to measure estrogen and androgen agonists and antagonists.Advances in Experimental Medicine and Biology 444, 9–23.PubMedGoogle Scholar
  108. Stroheker, T., Cabaton, N., Berges, R., Lamothe, V., Lhuguenot, J.-C., and Chagnon, M.-C. (2003) Influence of dietary soy isoflavones on the accessory sex organs of the Wistar rat.Food Chemistry and Toxicology 41, 1175–1183.Google Scholar
  109. Ström, A., Hartman, J., Foster, J.S., Kietz, S., Wimalasena, J., and Gustafsson, J.-Å. (2004) Estrogen receptor β inhibits 17β-estradiol-stimulated proliferation of the breast cancer cell line T47D.Proceedings of the National Academy of Sciences of the United States of America 101, 1566–1571.PubMedGoogle Scholar
  110. Suetsugi, M., Su, L., Karlsberg, K., Yuan, Y.C., and Chen, S. (2003) Flavone and isoflavone phytoestrogen are agonist of estrogen-related receptors.Molecular Cancer Research 1, 981–991PubMedGoogle Scholar
  111. Sun, J., Meyers, M.J., Fink, B.E., Rajendran, R., Katzenellenbogen, J.A., and Katzenellenbogen, B.S. (1999) Novel ligands that function as selective estrogens or antiestrogens for estrogen receptor-alpha or estrogen receptor-beta.Endocrinology 140, 800–804.PubMedGoogle Scholar
  112. Suzuki, T., Kitamura, S., Khota, R., Sugihara, K., Fujimoto, N., and Ohta, S. (2005) Estrogenic and antiandrogenic activities of 17 benzophenone derivates used as UV stabilizers and sunscreens.Toxicology and Applied Pharmacology 203, 9–17.PubMedGoogle Scholar
  113. Thigpen, J.E., Li, L.-A., Richter, C.B., Lebetkin, E.H., and Jameson, C.W. (1987) The mouse bioassay for detection of estrogenic activity in rodent diets: II. Comparative estrogenic activity of purified, certified and standard open and closed formula rodent diets.Laboratory Animal Science 37, 602–605.PubMedGoogle Scholar
  114. Thigpen, J.E., Setchell, K.D.R., Ahlmark, K.B., Lockear, J., Spahr, T., Caviness, G.F., Goelz, M.F., Haseman, J.K., Newbold, R.R., and Forsythe, D.B. (1999) Phytoestrogen content of purified, open- and closed-formula laboratory animal diets.Laboratory Animal Science 49, 530–535.PubMedGoogle Scholar
  115. Thigpen, J.E., Haseman, J.K., Saunders, H., Locklear, J., Caviness, G., Grant, M., and Forsythe, D. (2002) Dietary factors affecting uterine weights of immature CD-1 mice used in uterotrophic bioassays.Cancer Detection and Prevention 26, 381–393.PubMedGoogle Scholar
  116. Thigpen, J.E., Setchell, K.D., Saunders, H.E., Haseman, J.K., Grant, M.G., and Forsythe, D.B. (2004) Selecting the appropriate rodent diet for endocrine disruptor research and testing studies.ILAR Journal 45, 401–416.PubMedGoogle Scholar
  117. Tinwell, H., Haseman, J., Lefevre, P.A., Wallis, N., and Ashby, J. (2002) Normal sexual development of two strains of rat exposed in utero to low doses of bisphenol A.Toxicology Science 68, 339–348.Google Scholar
  118. USA, Food and Drug Administration (1999) Soy Protein and Cororary Herath Disease.Federal Register 64, 57700–57733.Google Scholar
  119. Valsta, L.M., Kilkkinen, A., Mazur, W., Nurmi, T., Lampi, A.M., Ovaskainen, M.L., Korhonen, T., Adlercreutz, H., and Pietinen, P. (2003) Phyto-oestrogen database of foods and average intake in Finland.British Journal of Nutrition 89, S31-S38.PubMedGoogle Scholar
  120. Van Erp-Baart, M.A., Brants, H.A., Kiely, M., Mulligan, A., Turrini, A., Sermoneta, C., Kilkkinen, A., and Valsta, L.M. (2003) Isoflavone intake in four different European countries: the VENUS approach.British Journal of Nutrition 89, S25-S30.PubMedGoogle Scholar
  121. Welsch, C.W. (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins.Cancer Research 45, 3415–3443.PubMedGoogle Scholar
  122. Wijayaratne, A.L., Nagel, S.C., Paige, L.A., Christensen, D.J., Norris, J.D., Fowlkes, D.M., McDonnell, D.P. (1999) Comparative analyses of mechanistic differences among antiestrogens.Endocrinology 140, 5828–5840.PubMedGoogle Scholar
  123. Yamada, T., Kunimatsu, T., Miyata, K., Yabushita, S., Sukata, T., Kawamura, S., Seki, T., Okuno, Y., and Mikami, N. (2004) Enhanced rat Hershberger assay appears reliable for detection of not only (anti) androgenic chemicals but also thyroid hormone modulators.Toxicology Science 79, 64–74.Google Scholar
  124. Zhou, G., Cummings, R., Li, Y., Mitra, S., Wilkinson, H.A., Elbrecht, A., Hermes, J.D., Schaeffer, J.M., Smith, R.G., and Moller, D.E. (1998) Nuclear receptors have distinct affinities for coactivators: characterisation by fluorescence resonance energy transfer. Molecular Endocrinology12, 1594–1604.PubMedGoogle Scholar

Copyright information

© Springer Heidelberg 2006

Authors and Affiliations

  • N. M. Saarinen
    • 1
  • C. Bingham
    • 4
  • S. Lorenzetti
    • 2
  • A. Mortensen
    • 3
  • S. Mäkelä
    • 1
  • P. Penttinen
    • 1
  • I. K. SØrensen
    • 3
  • L. M. Valsta
    • 4
  • F. Virgili
    • 2
  • G. Vollmer
    • 5
  • A. Wärri
    • 1
  • O. Zierau
    • 5
  1. 1.Functional Foods ForumUniversity of TurkuTurkuFinland
  2. 2.National Institute for Research on Food and NutritionRomeItaly
  3. 3.Department of Toxicology and Risk AssessmentDanish Institute for Food and Veterinary ResearchSøborgDenmark
  4. 4.Department of Health Promotion and Chronic Disease Prevention, Nutrition UnitThe National Public Health Institute (KTL)HelsinkiFinland
  5. 5.Institute for ZoologyDresden University of TechnologyDresdenGermany

Personalised recommendations