Advertisement

Genes & Nutrition

, 1:75 | Cite as

Evolutionary conservation of metabolism explains howDrosophila nutrigenomics can help us understand human nutrigenomics

  • Douglas M. Ruden
  • Xiangyi Lu
Article

Abstract

While large populations in the third world are enduring famine, much of the developed world is undergoing an obesity epidemic. In addition to reflecting an unbalanced distribution of food, the “epidemic of overabundance” is ironically leading to a decrease in the health and longevity of the obese and improperly nourished in the first world. International consortia, such as the European Nutrigenomics Organization (NuGO), are increasing our knowledge of nutrientgene interactions and the effects of diet and obesity on human health. In this review, we summarize both previous and ongoing nutrigenomics studies in Drosophila and we explain how these studies can be used to provide insights into molecular mechanisms underlying nutrigenomics in humans. We will discuss how quantitative trait locus (QTL) experiments have identified genes that affect triglyceride levels in Drosophila, and how microarray analyses show that hundreds of genes have altered gene expression under different dietary conditions. Finally, we will discuss ongoing combined microarray-QTL studies, termed “genetical genomics,” that promise to identify “master modulatory loci” that regulate global responses of potentially hundreds of genes under different dietary conditions. When “master modulatory loci” are identified in Drosophila, then experiments in mammalian models can be used to determine the relevance of these genes to human nutrition and health.

Key Words

Drosophila Genetical Genomics Metabolism Nutrigenomics 

References

  1. Arrese, E. L., Canavoso, L. E., Jouni, Z. E., Pennington, J. E., Tsuchida, K., and Wells, M. A. (2001). Lipid storage and mobilization in insects: current status and future directions.Insect Biochemistry & Molecular Biology 31, 7–17.CrossRefGoogle Scholar
  2. Bauer, M., Hamm, A., and Pankratz, M. J. (2004). Linking nutrition to genomics.Biological Chemistry 385, 593–596.PubMedCrossRefGoogle Scholar
  3. Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nature Reviews Genetics6, 9–23.PubMedCrossRefGoogle Scholar
  4. Bystrykh, L., Weersing, E., Dontje, B., Sutton, S., Pletcher, M.T., Wiltshire, T., Su, A. L, Vellenga, E., Wang, J., Manly, K. E,et al. (2005). Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. [see comment].Nature Genetics 37, 225–232.PubMedCrossRefGoogle Scholar
  5. Canavoso, L. E., Bertello, L. E., de Lederkremer, R. M., and Rubiolo, E. R. (1998). Effect of fasting on the composition of the fat body lipid of Dipetalogaster maximus, Triatoma infestans and Panstrongylus megistus (Hemiptera:Reduviidae). Journal of Comparative Physiology — B, Biochemical, Systemic, & Environmental Physiology168, 549–554.CrossRefGoogle Scholar
  6. Canavoso, L. E., Jouni, Z. E., Karnas, K. J., Pennington, J. E., and Wells, M. A. (2001). Fat metabolism in insects.Annual Review of Nutrition 21, 23–46.PubMedCrossRefGoogle Scholar
  7. Canavoso, L. E., and Wells, M. A. (2000). Metabolic pathways for diacylglycerol biosynthesis and release in the midgut of larval Manduca sexta.Insect Biochemistry & Molecular Biology 30, 1173–1180.CrossRefGoogle Scholar
  8. Carlborg, O., De Koning, D. J., Manly, K. F., Chesler, E., Williams, R. W, and Haley, C. S. (2005). Methodological aspects of the genetic dissection of gene expression.Bioinformatics 21, 2383–2393.PubMedCrossRefGoogle Scholar
  9. Chadwick, R. (2004). Nutrigenomics, individualism and public health.Proceedings of the Nutrition Society 63, 161–166.PubMedCrossRefGoogle Scholar
  10. Cheung, C. C, Martin, I. C, Zenger, K. R, Donald, J. A., Thomson, P. C, Moran, C., and Buckley, M. F. (2004). Quantitative trait loci for steady-state platelet count in mice.Mammalian Genome 15, 784–797.PubMedCrossRefGoogle Scholar
  11. Church, G. M. (2006). Genomes for all.Scientific American 294, 46–54.PubMedCrossRefGoogle Scholar
  12. Clark, A. G., and Keith, L. E. (1988). Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage.Genetics 119, 595–607.PubMedGoogle Scholar
  13. Curtsinger, J. W (2003). Peeking under QTL peaks.Nature Genetics 34, 358–359.PubMedCrossRefGoogle Scholar
  14. de Koning, D. J., Carlborg, O., and Haley, C. S. (2005). The genetic dissection of immune response using gene-expression studies and genome mapping.Veterinary Immunology & Immunopathology 105, 343–352.CrossRefGoogle Scholar
  15. de Koning, D. J., and Haley, C. S. (2005). Genetical genomics in humans and model organisms.Trends in Genetics 21, 377–381.PubMedCrossRefGoogle Scholar
  16. De Luca, M., Roshina, N. V., Geiger-Thornsberry G. L., Lyman, R. E, Pasyukova, E. G., and Mackay, T. F. (2003). Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.Nature Genetics 34, 429–433.PubMedCrossRefGoogle Scholar
  17. De Luca, M., Yi, N., Allison, D. B., Leips, J., and Ruden, D. M. (2005). Mapping quantitative trait loci affecting variation in Drosophila triacylglycerol storage.Obesity Research 13, 1–10.Google Scholar
  18. Devor, M., Gilad, A., Arbilly M., Yakir, B., Raber, P., Pisante, A., and Darvasi, A. (2005). pain l: a neuropathic pain QTL on mouse chromosome 15 in a C3HxC58 backcross.Pain 116, 289–293.PubMedCrossRefGoogle Scholar
  19. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution.The American Biology Teacher 35, 125–129.Google Scholar
  20. Dobzhansky, T.G. (1955). Evolution, genetics, and man (New York, Wiley).Google Scholar
  21. Drazinic, C. M., Ercan-Sencicek, A. G., Gault, L. M., Hisama, F. M., Qumsiyeh, M. B., Nowak, N.J., Cubells, J. F., and State, M. W (2005). Rapid array-based genomic characterization of a subtle structural abnormality: a patient with psychosis and der(18)t(5;18)(p14.1;p11.23). American Journal of Medical Genetics Part A134, 282–289.PubMedCrossRefGoogle Scholar
  22. Driver, C. J. (1988). The effect of meal composition on the degree of satiation following a test meal and possible mechanisms involved.British Journal of Nutrition 60, 441–449.PubMedCrossRefGoogle Scholar
  23. Du, W., Cieplik, M., Durstewitz, G., Sarkar, C. M., Kruschina, M., Fries, R., and Ortigao, F. R. (2003). Minisequencing on functionalised self-assembled monolayer as a simple approach for single nucleotide polymorphism analysis of cattle.Zeitschrift fur Naturforschung Section C Journal of Biosciences 58, 413–420.Google Scholar
  24. Fenech, M. (2005). The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis.Mutagenesis 20, 255–269.PubMedCrossRefGoogle Scholar
  25. Gillies, P. J. (2003). Nutrigenomics: the Rubicon of molecular nutrition.Journal of the American Dietetic Association 103, S50–55.PubMedCrossRefGoogle Scholar
  26. Guo, J., Zhao, F., Qiu, L., and Li, X. (2001). [Effect of multimi cronutrient on heat adaptation and its probable mechanism]. Wei Sheng Yen Chiu/Journalof Hygiene Research 30, 273–275.PubMedGoogle Scholar
  27. Haldane, J. B. S. (1954). The biochemistry of genetics (London, Allen & Unwin).Google Scholar
  28. Helfand, S. L., and Rogina, B. (2003). Genetics of aging in the fruit fly, Drosophila melanogaster. Annual Review of Genetics37, 329–348.PubMedCrossRefGoogle Scholar
  29. Hribal, M. L, Oriente, F., and Accili, D. (2002). Mouse models of insulin resistance.American Journal of Physiology Endocrinology & Metabolism 282, E977–981.Google Scholar
  30. Jansen, R. C, and Nap, J. P. (2001). Genetical genomics: the added value from segregation.Trends in Genetics 17, 388–391.PubMedCrossRefGoogle Scholar
  31. Junien, C., and Gallou, C. (2004). Cancer nutrigenomics.World Review of Nutrition & Dietetics 93, 210–269.CrossRefGoogle Scholar
  32. Kaput, J. (2005). The case for strategic international alliances to harness nutritional genomics for public and personal health.British Journal of Nutrition 94, 623–632.PubMedCrossRefGoogle Scholar
  33. Kaput, J., and Rodriguez, R. L. (2004). Nutritional genomics: the next frontier in the postgenomic era. Physiological Genomics 16, 166–177. Kim, E. H., Lee, C. H., Hyun, B. H., Suh, J. G., Oh, Y. S., Namikawa, T., and Ishikawa, A. (2005). Quantitative trait Loci for glomerulosclerosis, kidney weight and body weight in the focal glomerulosclerosis mouse model. Experimental Animals54, 319–325.PubMedCrossRefGoogle Scholar
  34. Kleeberger, S. R. (2005). Genetic aspects of pulmonary responses to inhaled pollutants.Experimental & Toxicologic Pathology 57 Suppl1, 147–153.CrossRefGoogle Scholar
  35. Li, H., Lu, L., Manly, K. E, Chesler, E. J., Bao, L., Wang, J., Zhou, M., Williams, R. W, and Cui, Y. (2005). Inferring gene transcriptional modulatory relations: a genetical genomics approach.Human Molecular Genetics 14, 1119–1125.PubMedCrossRefGoogle Scholar
  36. Mackay, T. F. (1995). The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system.Trends in Genetics 11, 464–470.PubMedCrossRefGoogle Scholar
  37. Mackay T. F. (1996). The nature of quantitative genetic variation revisited: lessons from Drosophila bristles.Bioessays 18, 113–121.PubMedCrossRefGoogle Scholar
  38. Mackay, T F. (2001). Quantitative trait loci in Drosophila.Nature Review Geriatrics 2, 11–20.CrossRefGoogle Scholar
  39. Mackay, T. F. (2002). The nature of quantitative genetic variation for Drosophila longevity.Mechanism of Ageing & Development 123, 95–104.CrossRefGoogle Scholar
  40. Mackay, T F., and Fry, J. D. (1996). Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative traitloci.Genetics 144, 671–688.PubMedGoogle Scholar
  41. Mackay, T. E, Fry, J. D., Lyman, R. E, and Nuzhdin, S. V. (1994). Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains.Genetics 136, 937–951.PubMedGoogle Scholar
  42. Mackay, T E, Hackett, J. B., Lyman, R. E, Wayne, M. L., and Anholt, R. R. (1996). Quantitative genetic variation of odorguided behavior in a natural population of Drosophila melanogaster.Genetics 144, 727–735.PubMedGoogle Scholar
  43. Mackay, T. E, and Langley, C. H. (1990). Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster.Nature 348, 64–66.PubMedCrossRefGoogle Scholar
  44. Mackay, T F., and Lyman, R. F. (1998). Polygenic mutation in Drosophila melanogaster: genotype x environment interaction for spontaneous mutations affecting bristle number.Genetica 103, 199–215.CrossRefGoogle Scholar
  45. Marteau, P., Lepage, P., Mangin, L., Suau, A., Dore, J., Pochart, P., and Seksik, P. (2004). Review article: gut flora and inflammatory bowel disease.Alimentary Pharmacology & Therapeutics 20 Suppl4, 18–23.CrossRefGoogle Scholar
  46. Masojc, P., and Milczarski, P. (2005). Mapping QTLs for alpha-amylase activity in rye grain.Journal of Applied Genetics 46, 115–123.PubMedGoogle Scholar
  47. Muller, M., and Kersten, S. (2003). Nutrigenomics: goals and strategies.Nature Reviews Genetics 4, 315–322.PubMedCrossRefGoogle Scholar
  48. Nuzhdin, S. V., Pasyukova, E. G., Dilda, C. L., Zeng, Z. B., and Mackay, T F. (1997). Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster.Proceedings of the national academy of Sciences USA94, 9734–9739.CrossRefGoogle Scholar
  49. Ommen, B., and Groten, J. P. (2004). Nutrigenomics in efficacy and safety evaluation of food components.World Review of Nutrition & Dietetics 93, 134–152.Google Scholar
  50. Ordovas, J. M., and Mooser, V. (2004). Nutrigenomics and nutrigenetics.Current Opinion in Lipidology 15, 101–108.PubMedCrossRefGoogle Scholar
  51. Page, G. P., and Ruden, D. M. (2005). Combining high dimensional biological data to study complex diseases and quantitative traits Design, Analysis, and Interpretation of Results (Boca Raton, FL, Chapman & Hall/CRC).Google Scholar
  52. Parks, A. L, Cook, K. R., Belvin, M., Dompe, N. A., Fawcett, R., Huppert, K., Tan, L. R., Winter, C. G., Bogart, K. P., Deal, J. E. (2004). Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome.Nature Genetics 36, 288–292.PubMedCrossRefGoogle Scholar
  53. Parma, D. H., Dill, M., and Slocum, M. K. (1979). Realignment of the genetic map of the terminus of the rIIB cistron of bacteriophage T4.Genetics 92, 711–720.PubMedGoogle Scholar
  54. Parracho, H. M., Bingham, M. O., Gibson, G. R., and McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children.Journal of Medical Microbiology 54, 987–991.PubMedCrossRefGoogle Scholar
  55. Partridge, L., Piper, M. D., and Mair, W. (2005a). Dietary restriction in Drosophila.Mechanisms ofAgeing & Development 126, 938–950.CrossRefGoogle Scholar
  56. Partridge, L., Pletcher, S. D., and Mair, W. (2005b). Dietary restriction, mortality trajectories, risk and damage.Mechanisms ofAgeing & Development 126, 35–41.CrossRefGoogle Scholar
  57. Pennacchio, L. A. (2003). Insights from human/mouse genome comparisons.Mammalian Genome 14, 429–436.PubMedCrossRefGoogle Scholar
  58. Peregrin, T (2001). The new frontier of nutrition science: nutrigenomics.Journal of the American Dietetic Association 101, 1306.PubMedCrossRefGoogle Scholar
  59. Perez-Enciso, M., and Misztal, I. (2004). Qxpak: a versatile mixed model application for genetical genomics and QTL analyses.Bioinformatics 20, 2792–2798.PubMedCrossRefGoogle Scholar
  60. Reyes-Valdes, M. H., and Williams, C. G. (2005). An entropybased measure of founder informativeness.Genetical Research 85, 81–88.PubMedCrossRefGoogle Scholar
  61. Rossmeisl, M., Rim, J. S., Koza, R. A., and Kozak, L. P. (2003). Variation in type 2 diabetes—related traits in mouse strains susceptible to diet-induced obesity.Diabetes 52, 1958–1966.PubMedCrossRefGoogle Scholar
  62. Ruden, D. M., Cui, X., Loraine, A. E., Ye, J., Bynum, K., Kim, N. C, De Luca, M., Garfinkel, M. D., and Lu, X. (2006). Methods for Nutrigenomics and Longevity Studies in Drosophila:Effects of Diets High in Sucrose, Palmitic Acid, Soy, or Beef.Methods in Molecular Biology in press.Google Scholar
  63. Ruden, D. M., De Luca, M., Garfinkel, M. D., Bynum, K., and Lu, X. (2005). Drosophila nutrigenomics can provide clues to human gene-nutrient interactions. Ann RevNutritionl 25, 21–24.Google Scholar
  64. Schmucker, D., Clemens, J. C, Shu, H., Worby C. A., Xiao, J., Muda, M., Dixon, J. E., and Zipursky, S. L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity.Cell 101, 671–684.PubMedCrossRefGoogle Scholar
  65. Schmucker, D., and Flanagan, J. G. (2004). Generation of recognition diversity in the nervous system.Neuron 44, 219–222.PubMedCrossRefGoogle Scholar
  66. Tebbutt, S. J., He, J. Q., Burkett, K. M., Ruan, J., Opushnyev, I. V., Tripp, B. W., Zeznik, J. A., Abara, C. O., Nelson, C. C, and Walley, K. R. (2004). Microarray genotyping resource to determine population stratification in genetic association studies of complex disease.Biotechniques 37, 977–985.PubMedGoogle Scholar
  67. Thibault, S. T., Singer, M. A., Miyazaki, W. Y., Milash, B., Dompe, N. A., Singh, C. M., Buchholz, R., Demsky M., Fawcett, R., Francis-Lang, H. L., etal. (2004). A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. [see comment].Nature Genetics 36, 283–287.PubMedCrossRefGoogle Scholar
  68. Tonisson, N., Kurg, A., Kaasik, K., Lohmussaar, E., and Metspalu, A. (2000). Unravelling genetic data by arrayed primer extension.Clinical Chemistry & Laboratory Medicine 38, 165–170.CrossRefGoogle Scholar
  69. Trayhurn, P. (2003). Nutritional genomics — “Nutrigenomics”.British Journal of Nutrition 89, 1–2.PubMedCrossRefGoogle Scholar
  70. Tsaih, S.W., Lu, L., Airey, D. C, Williams, R. W, and Churchill, G. A. (2005). Quantitative trait mapping in a diallel cross of recombinant inbred lines.Mammalian Genome 16, 344–355.PubMedCrossRefGoogle Scholar
  71. van Ommen, B. (2004). Nutrigenomics: exploiting systems biology in the nutrition and health arenas.Nutrition 20, 4–8.PubMedGoogle Scholar
  72. van Ommen, B., and Stierum, R. (2002). Nutrigenomics: exploiting systems biology in the nutrition and health arena.Current Opinion in Biotechnology 13, 517–521.PubMedCrossRefGoogle Scholar
  73. Watson, F. L., Puttmann-Holgado, R., Thomas, F., Lamar, D. L., Hughes, M., Kondo, M., Rebel, V. I., and Schmucker, D. (2005). Extensive diversity of Ig-superfamily proteins in the immune system of insects, [see comment].Science 309, 1874–1878.PubMedCrossRefGoogle Scholar
  74. Welton, A. R., Chesler, E. J., Sturkie, C., Jackson, A. U., Hirsch, G. N., and Spindler, K. R. (2005). Identification of quantitative trait loci for susceptibility to mouse adenovirus type 1.Journal of Virology 79, 11517–11522.PubMedCrossRefGoogle Scholar
  75. Worby, C. A., Simonson-Leff N., Clemens, J. C, Kruger, R. P., Muda, M., and Dixon, J. E. (2001). The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton.Journal of Biological Chemistry 276, 41782–41789.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Environmental Health SciencesUniversity of Alabama at BirminghamBirmingham

Personalised recommendations