, Volume 52, Issue 6, pp 631–645 | Cite as

Structural properties of undercooled liquid sodium and caesium

  • O. Akinlade
  • B. R. Ijaduola
  • U. E. Vincent
  • G. A. Adebayo
Research Articles


Extensive theoretical results for the temperature dependence of the static and dynamical structure of undercooled alkali metals using Na and Cs as examples are presented. The static structural properties are obtained from the HMSA integral equations using pair potentials derived from an accurate non-local pscudopotential. The dynamical properties obtained from viscoelastic theory are compared with experiments and the results of memory function formalism. The study indicates that collective density excitations are more dominant in the undercooled region than at their melting points, and that the dynamical properties of Na and Cs exhibit subtle differences in their gross features.


Undercooled alkali metals sodium caesium temperature dependence structural properties dynamical properties 


61.20 63.90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K Tamura and S Hosokawa,J. Non-Cryst. Solids 156-168, 646 (1993)CrossRefGoogle Scholar
  2. [2]
    F Hensel and M Yao,J. Non-Cryst. Solids 205-207, 231 (1996)CrossRefGoogle Scholar
  3. [3]
    C Pilgrim, R Winter and F Hensel,J. Phys.: Cond. Matt. 5, B183 (1993)CrossRefGoogle Scholar
  4. [4]
    H Mori, K Hoshino and M Watabe,J. Phys. Soc. Jpn. 59, 3254 (1990)CrossRefADSGoogle Scholar
  5. [5]
    N Matsuda, H Mori, K Hoshino and M Watabe,J Phys.: Cond. Matt. 3, 827 (1991)CrossRefADSGoogle Scholar
  6. [6]
    W Gotze and L Sjorgen,Rep. Prog. Phys. 55, 241 (1992)CrossRefADSGoogle Scholar
  7. [7]
    S K Lai and S Y Chang,Phys. Rev. B51, R12869 (1995)ADSGoogle Scholar
  8. [8]
    S K Lai and H C Chen,J. Phys.: Cond. Matt. 7, 1499 (1995)CrossRefADSGoogle Scholar
  9. [9]
    S K Lai and H C Chen,J. Phys.: Cond. Matt. 5, 4325 (1993)CrossRefADSGoogle Scholar
  10. [10]
    J Lu and J A Szpunar,Philos. Mag. A75, 1057 (1997)Google Scholar
  11. [11]
    J P Hansen and I R McDonald,Theory of simple liquids (Academic: London, 1986)Google Scholar
  12. [12]
    M Fuchs, W Gotze, S Hildebrand and A Latz,J Phys.: Cond. Matt. 4, 7709 (1992)CrossRefADSGoogle Scholar
  13. [13]
    Y Kaneko, J Bosse,J. Non. Cryst. Solids 205-207, 472 (1996)CrossRefGoogle Scholar
  14. [14]
    I M de Schepper, E G D Cohen, C Brunin, J C van Rijs, W Montfrooij and L A de Graaf,Phys. Rev. A38, 271 (1988)ADSGoogle Scholar
  15. [15]
    W E Allen and B J Alder,Phys. Rev. A27, 3158 (1987)ADSGoogle Scholar
  16. [16]
    B Kamge-Parsi, E G D Cohen and I M de Schepper,Phys. Rev. A35, 4781 (1987)ADSGoogle Scholar
  17. [17]
    T Bry and Y Chuskak,J. Phys.: Cond. Matter 9, 3329 (1997)CrossRefADSGoogle Scholar
  18. [18]
    J R D Copley and J M Rowe,Phys. Rev. Lett. 32, 49 (1974)CrossRefADSGoogle Scholar
  19. [19]
    J R D Copley and J M Rowe,Phys. Rev. A9, 1656 (1974)ADSGoogle Scholar
  20. [20]
    A Rahman,Phys. Rev. Lett. 32, 52 (1974)CrossRefADSGoogle Scholar
  21. [21]
    P K Kahol, R Bansal and K N Pathak,Phys. Rev. A14, 408 (1976)ADSGoogle Scholar
  22. [22]
    G N Arkady, V S Vadim, L S Alexander, M Y Renam and R Y Timur,Physica B228, 312 (1996)Google Scholar
  23. [23]
    A G Novikov, V V Savostin, A L Shimkerich, M V Zaezjev,Physica B234-236, 359 (1997)ADSGoogle Scholar
  24. [24]
    O Akinlade and B R Ijaduola,J. Phys.: Cond. Matter 10, 533 (1998)CrossRefADSGoogle Scholar
  25. [25]
    U Balucani and M Zoppi,Dynamics of the liquid state (Oxford: Clarendon, 1994)Google Scholar
  26. [26]
    T Bodensteiner, C Morkel, W Glasser and B Dorner,Phys. Rev. A45, 5709 (1992)ADSGoogle Scholar
  27. [27]
    R K Sharma and K Tankeshwar,Phys. Rev. E55, 564 (1997)ADSGoogle Scholar
  28. [28]
    S Kambayashi and G Kahl,Phys. Rev. A46, 3255 (1992)ADSGoogle Scholar
  29. [29]
    G Zerah and J P Hansen,J. Chem. Phys. 84, 2336 (1986)CrossRefADSGoogle Scholar
  30. [30]
    D H Li, X R Li and S Wang,J Phys. F16, 309 (1986)CrossRefADSGoogle Scholar
  31. [31]
    O Akinlade, S K Lai and M P Tosi,Physica B167, 61 (1990)ADSGoogle Scholar
  32. [32]
    S Ichimaru and K Utsumi,Phys. Rev. B24, 7385 (1981)ADSGoogle Scholar
  33. [33]
    J D Weeks, D Chandler and H C Andersen,J. Chem. Phys. 54, 4931 (1970)Google Scholar
  34. [34]
    M J Gillan,Mol. Phys. 38, 1781 (1979)CrossRefADSGoogle Scholar
  35. [35]
    G M Abernethy and M J Gillan,Mol. Phys. 39, 839 (1980)CrossRefADSGoogle Scholar
  36. [36]
    S W Lovesey,J. Phys. C4, 3057 (1971)ADSGoogle Scholar
  37. [37]
    K Hoshino, F Shimojo and M Watabe,J. Phys. Soc. Jpn. 63, 2185 (1994)CrossRefADSGoogle Scholar
  38. [38]
    D J Gonzalez, L E Gonzalez and K Hoshino,J. Phys.: Cond. Matt. 6, 3849 (1994)CrossRefADSGoogle Scholar
  39. [39]
    W van der Lugt and B P Alblas,Handbook of thermodynamic and transport properties of liquid metals edited by R W Ohse (New York, McGraw Hill, 1985)Google Scholar
  40. [39a]
    M J Huijbin and W van der Lugt,Acta Crystallogr. A35, 431 (1979)Google Scholar
  41. [40]
    Y Rosenfeld and N V Ashcroft,Phys. Rev. A20, 1208 (1979)ADSGoogle Scholar
  42. [41]
    C Morkel and W Glaser,Phys. Rev. A33, 3383 (1986)ADSGoogle Scholar
  43. [42]
    J M Haile,Molecular dynamics simulation: Elementary methods (New York, John Wiley & Sons Inc., 1992)Google Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • O. Akinlade
    • 1
    • 2
  • B. R. Ijaduola
    • 1
    • 2
  • U. E. Vincent
    • 1
    • 2
  • G. A. Adebayo
    • 1
    • 2
  1. 1.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Department of PhysicsUniversity of AgricultureAbeokutaNigeria

Personalised recommendations