Advertisement

The heat kernel and Hardy’s theorem on symmetric spaces of noncompact type

  • E. K. Narayanan
  • S. K. Ray
Article

Abstract

For symmetric spaces of noncompact type we prove an analogue of Hardy’s theorem which characterizes the heat kernel in terms of its order of magnitude and that of its Fourier transform.

Keywords

Hardy’s theorem uncertainty principles symmetric spaces 

References

  1. [1]
    Astengo F, Cowling M G, Di Blasio B and Sundari M, Hardy’s uncertainty principle on some Lie groups,J. London Math. Soc. (to appear)Google Scholar
  2. [2]
    Anker J P, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi and Varadarajan,J. Funct. Anal. 96 (1991) 331–349MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Anker J P, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces,Duke Math. J. 65 (1992) 257–297MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Anker J P and Ji L, Heat kernel and green function estimates on noncompact symmetric spaces,Geometric Funct. Anal. 9 (1999) 1035–1091MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Chandrasekharan K, Classical Fourier transforms (New York: Springer-Verlag) (1989)MATHGoogle Scholar
  6. [6]
    Cowling M G, Sitaram A and Sundari M, Hardy’s uncertainty principles on semisimple Lie groups,Pacific. J. Math. 192 (2000) 293–296MATHMathSciNetGoogle Scholar
  7. [7]
    Folland G B and Sitaram A, The uncertainty principles: A mathematical survey,J. Fourier Anal. Appl. 3 (1997) 207–238MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Gangolli R, Asymptotic behavior of spectra of compact quotient of certain symmetric spaces,Acta Math. 121 (1968) 151–192MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Gangolli R and Varadarajan V S, Harmonic Analysis of Spherical Functions on Real Reductive Groups (New York: Springer-Verlag) (1988)MATHGoogle Scholar
  10. [10]
    Helgason S, Geometric analysis on symmetric spaces, Mathematical surveys and monographs, AMS, Vol 39, 1994Google Scholar
  11. [11]
    Helgason S, Groups and Geometric Analysis-Integral Geometry, Invariant Differential Operators and Spherical Functions (New York: Academic Press) (1984)MATHGoogle Scholar
  12. [12]
    Knapp A W, Representation Theory of Semisimple Lie Groups, An Overview Based on Examples (Princeton, NJ: Princeton Univ. Press) (1986)Google Scholar
  13. [13]
    Pati V, Sitaram A, Sundari M and Thangavelu S, An uncertainty principle for eigenfunction expansions,J. Fourier Anal. Appl. 2(5) (1996) 427–433MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Sengupta J, An analogue of Hardy’s theorem on semisimple Lie groups,Proc. AMS. 128 (2000) 2493–2499MATHCrossRefGoogle Scholar
  15. [15]
    Shimeno N, An analogue of Hardy’s theorem for the Harish Chandra transform,Horoshima Math. J. (to appear)Google Scholar
  16. [16]
    Sitaram A and Sundari M, An analogue of Hardy’s theorem for very rapidly decreasing functions on semisimple Lie groups,Pacific J. Math. 177 (1997) 187–200MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Terras A, Harmonic Analysis on Symmetric Spaces and Applications (New York: Springer-Verlag) Volumes 1 & 2 (1988)MATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2002

Authors and Affiliations

  1. 1.Stat-Math UnitIndian Statistical InstituteBangaloreIndia
  2. 2.Department of MathematicsIndian Institute of Technology, KanpurKanpurIndia

Personalised recommendations