L p -continuity for Calderón-Zygmund operator

  • Q. X. Yang


Given a Calderón-Zygmund (C-Z for short) operatorT, which satisfies Hörmander condition, we prove that: ifT maps all the characteristic atoms toWL 1, thenT is continuous fromL p toL p (1 <p < ∞). So the study of strong continuity on arbitrary function inL p has been changed into the study of weak continuity on characteristic functions.


C-Z operator characteristic atoms WL1 Hardy-Littlewood maximal operator *-maximal operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cheng M D, Deng D G and Long R L, Real analysis (in Chinese) (Beijing: High education publish house) (1993) pp. 271–279Google Scholar
  2. [2]
    David G and Journé J L, A boundedness criterion for generalized Calderón-Zygmund operators,Ann. Math. 120 (1984) 371–397CrossRefGoogle Scholar
  3. [3]
    Deng D G, Yan L X and Yang Q X, Blocking analysis and T(1) theorem,Science in China 41 (1998) 801–808MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Deng D G, Yan L X and Yang Q X, On Hörmander condition,Chin. Sci. Bull. 42 (1997) 1341–1345MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Han Y S and Hofman S, T1 Theorem for Besov and Triebel-Lizorkin spaces,Transaction of the American Mathematical Society 337 (1993) 839–853MATHCrossRefGoogle Scholar
  6. [6]
    Journé J L,Lecture Notes in Math. 994 (1983) 43–45Google Scholar
  7. [7]
    Meyer Y, La minimalité de l’espace de Besov B1/0,1 et la continuité des opérateurs definis par des intégrales singulières,Monografias de Matematicas (Universidad autónoma de Madrid) Vol. 4Google Scholar
  8. [8]
    Meyer Y, Ondelettes et opérateurs, I et II (Paris: Hermann) (1991–1992)Google Scholar
  9. [9]
    Stein E M, Harmonic analysis-real variable methods, orthogonality, and integrals (Princeton University Press) (1993)Google Scholar
  10. [10]
    Yabuta K, Generalizations of Calderón-Zygmund operators,Studia Math. 82 (1985) 17–31MATHMathSciNetGoogle Scholar
  11. [11]
    Yang Q X, Decomposition in blocks at the level of coefficients and T(1) Theorem on Hardy space,J. Zhejiang University Science 1 (2002) 94–99CrossRefGoogle Scholar
  12. [12]
    Yang Q X, Wavelet and distribution (Beijing: Beijing Science and Technology Press) (2002)Google Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.Department of MathematicsWuhan UniversityHubeiChina

Personalised recommendations