Skip to main content
Log in

Underwater inspection of concrete-filled steel pipes using guided waves

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Concrete-filled steel pipes have been widely used as piles for supporting marine and civil structures. They provide good bending resistance and can be easily spliced for long depth installations. In addition, they have high strength and ductility and are an economical solution for bridges. However, these piles are usually exposed in water, particularly seawater, and thus the outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. To avoid this type of deterioration, appropriate inspection and repair techniques are required. The acoustic method is an attractive method for the interface delamination detection since it is relatively simple and versatile. Guided wave techniques have particularly strong potential for this type of inspection and the feasibility of the guided wave techniques for detecting the interface inspection is investigated in this paper. A special coupling mechanism for transmitting the guided waves is introduced for the experimental study. An analytical study is also carried out to identify the cylindrical guided wave modes that are sensitive to the interface separation. This study shows the feasibility of using guided waves for underwater inspection of concrete-filled steel pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Concrete Institute (1988). “Recommendations for Design, Manufacture, and Installation of Concrete Piles.”Manual of Concrete Practice, Part 4 (ACI 543R-74). Detroit, Michigan. American Concrete Institute.

    Google Scholar 

  • Alleyne, D. and Cawley, P. (1995). The Long Range Detection of Corrosion in Pipes Using Lamb Waves. In D. O. Thompson and D. E. Chimenti (Eds.),Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14B, (pp. 2073–2080). New York, NY: Plenum Press.

    Google Scholar 

  • American Society for Testing and Materials (1993).Standad Practice for the Measurement of the Apparent Attenuation of Longitudinal Ultrasonic Waves by Immersion Method. (ASTM E664-93), Philadelphia, PA: American Society for Testing and Materials.

    Google Scholar 

  • Chan, C. W. and Cawley, P. (1995). Guided Waves for the Detection of Defects in Welds in Plastic Pipes. In D. O. Thompson and D. E. Chimenti (Eds.),Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14B (pp. 1537–1544). New York, NY: Plenum Press.

    Google Scholar 

  • Cheng, A. and Cheng, A. P. (1999). Characterization of Layered Cylindrical Structures Using Cylindrical Waves. In D. O. Thompson and D. E. Chimenti (Eds.),Review of Progress in Quantitative Nondestructive Evaluation, Vol. 18A, (pp. 223–230). New York, NY; Plenum Press.

    Google Scholar 

  • Gaythwaite, J. H. (1990).Design of Marine Facilities for the Berthing Mooring, and Repair of Vessels. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Ghosh, T. and Kundu, T. (1998). “A New Transducer Holder Mechanism for Efficient Generation and Reception of Lamb Modes in Large Plates.”Journal of the Acoustical Society of America.Vol. 104, No. 3, pp. 1498–1502.

    Article  Google Scholar 

  • Ghosh, T., Kundu, T., and Karpur, P. (1998). Efficient Use of Lamb Modes for Detecting Defects in Large Plates.Ultrasonics, Vol. 36, pp. 791–801.

    Article  Google Scholar 

  • Guo, D. and Kundu, T. (2000). A New Sensor for Pipe Inspection by Lamb Waves.Materials Evaluation.Vol. 58, No. 8, pp. 991–994.

    Google Scholar 

  • Guo, D. and Kundu, T. (2001). “A New Transducer Holder Mechanism for Pipe Inspection,”Journal of Acoustical Society of America, Vol. 110, No. 1, pp. 303–309.

    Article  Google Scholar 

  • Krautkrämer, J. and Krautkrämer, H. (1983).Ultrasonic Testing of Materials. (3rd ed.), Spring-Verlag.

  • Kundu, T., Maslov, K., Karpur, P., Matikas, T.E., and Nicolaou, P.D. (1996). A Lamb Wave Scanning Approach for the Mapping of Defects in [0/90] Titanium Matrix Composites.Ultrasonics, Vol. 34, pp. 43–49.

    Article  Google Scholar 

  • Lin, J. and Sansalone, M. (1994). “Impact-Echo Response of Hollow Cylindrical Concrete Structure Surrounded by Soil and Rock: Part II-Experimental Studies.”Geotechnical Testing Journal, Vol. 17, No. 2, pp. 220–226.

    Article  Google Scholar 

  • Na, W. B. and Kundu, T. (in-press). “Underwater Pipeline Inspection Using Guided Waves.”Journal of Pressure Vessel Technology.

  • Na, W. B., Kundu, T., and Ryu, Y. S. (2001. “Cylindrical Guided Waves for Inspection of Clay-Steel Pile Interface.”KSCE, Journal of Civil Engineering, Vol. 5, No. 1, pp. 29–34.

    Google Scholar 

  • Nakamura, S. (1998). “Design Strategy to Make Steel Bridges More Economical.”Journal of Construction Steel Review, Vol. 46, No. 1–3, pp. 58.

    Article  Google Scholar 

  • National Science Foundation. (1957).American Institute of Physics Handbook. D. E. Gray (Ed.), McGraw-Hill.

  • Pavlakovic, B. and Lowe, M. (2000).Disperse Users Manual. Imperial College, University of London, Non-Destructive Laboratory.

  • Rix, G. J., Jacobs, L. J., Rhodes, P. B., and Raparelli, R. Q. (1996). “Nondestructive Assessment of Pile Tip Elevation Using Flexural Waves.”Proceedings Symposium on the Application of Geophysics to Engineering and Environmental Problem, pp. 577–586.

  • Rose, J. L., Cho, Y., and Ditri, J. L. (1994). Cylindrical Guided Wave Leakage Due to Liquid Loading. In D. O. Thompson and D. E. Chimenti (Eds.),Review of Progress in Quantitative Nondestructive Evaluation, Vol. 13A, (pp. 259–266). New York, NY: Plenum Press.

    Google Scholar 

  • Travers, F. A. (1997). Acoustic Monitoring of Prestressed Concrete Pipe.Construction Building and Materials, Vol. 11, No. 3, pp. 175–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Bae Na.

Additional information

The manuscript for this paper was submitted for review on September 24, 2001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, WB., Kundu, T. & Ryu, YS. Underwater inspection of concrete-filled steel pipes using guided waves. KSCE J Civ Eng 6, 25–31 (2002). https://doi.org/10.1007/BF02829037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829037

Keywords

Navigation