, Volume 51, Issue 3–4, pp 463–479 | Cite as

Design considerations and scaling laws for high power convective cooled CW CO2 lasers

  • A. K. Nath
  • V. S. Golubev
Research Articles


Various criteria for designing high power convective cooled CO2 lasers have been discussed. Considering the saturation intensity, optical damage threshold of the optical resonator components and the small-signal gain, the scaling laws for designing high power CW CO2 lasers have been established. In transverse flow CO2 lasers having discharge of square cross-section, the discharge lengthL and its widthW for a specific laser powerP (Watt) and gas flow velocityV (cm/s) can be given byL = 1.4 x 104 p 1/2 V -1 cms andW = 0.04P 1/2 cms.

The optimum transmitivity of the output coupler is found to be almost constant (about 60%), independent of the small signal gain and laser power. In fast axial flow CO2 lasers the gas flow should be divided into several discharge tubes to maintain the flow velocity within sonic limit. The discharge length in this type of laser does not depend explicitly on the laser power, instead it depends on the input power density in the discharge and the gas flow velocity. Various considerations for ensuring better laser beam quality are also discussed.


CO2 laser convective cooled design criteria scaling laws 


42.55 42.60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W B Triffany, R Tary and J D Foster,Appl. Phys. Lett. 15, 91 (1969)CrossRefADSGoogle Scholar
  2. [2]
    A C Eckbreth and J W Davis,Appl. Phys, Lett. 19, 101 (1971)CrossRefADSGoogle Scholar
  3. [3]
    J P Reilly,J. Appl. Phys. 43, 4311 (1972)CrossRefGoogle Scholar
  4. [4]
    H Hoag, H Pease, J Staal and J Zar,Appl. Opt. 13, 1959 (1974)ADSCrossRefGoogle Scholar
  5. [5]
    D B Nicholas and W M Brandenberg,IEEE J. Quantum Electron. 8, 718 (1972)CrossRefADSGoogle Scholar
  6. [6]
    A E Hill,Appl. Phys. Lett. 22, 670 (1972)CrossRefADSGoogle Scholar
  7. [7]
    A K Nath, H J J Seguin and V A Seguin,IEEE J. Quantum Electron. 22, 268 (1986)CrossRefADSGoogle Scholar
  8. [8]
    D Schuocker,Lasers in Engineering 4, 179 (1995)Google Scholar
  9. [9]
    A K Nath, L Abhinandan, P Choudhary and M Kumar,Pramana — J. Phys. 38, 379 (1992)ADSGoogle Scholar
  10. [10]
    A K Nath, L Abhinandan and P Choudhary,Opt. Engg. 33, 1889 (1994)CrossRefADSGoogle Scholar
  11. [11]
    K M Abramski, A D Colley, H J Baker and D R Hall,Appl. Phys. Lett. 54, 1833 (1989)CrossRefADSGoogle Scholar
  12. [12]
    K H Wu,IEEE J. Quantum Electron. 23, 1981 (1987)CrossRefADSGoogle Scholar
  13. [13]
    N Tabata, H Nagai, H Yoshida, M Hishi, M Tanaka, Y Myoi and T Akiba,Tech. Digest Conf. Lasers and Electro-optics, Anaheim, California, paper TUC4, 54 (1984)Google Scholar
  14. [14]
    C A Fenstremacher, M J Nutter, W T Leland and K Boyer,Appl. Phys. Lett. 20, 56 (1972)CrossRefADSGoogle Scholar
  15. [15]
    G A Abilsiitov, E P Velikhov, V S Golubev and F Lebedev,Sov. J. Quantum Electron. 11, 1535 (1981)CrossRefGoogle Scholar
  16. [16]
    E Nasser,Fundamentals of gaseous ionization and plasma electronics (Wiley Inter-science, New York, 1971) 173–175Google Scholar
  17. [17]
    G I Kozlov and VA Kuznetsov,Sov. J. Quantum Electron. 15, 362 (1985)CrossRefGoogle Scholar
  18. [18]
    F Lebedev, A Glova, O Kachurin, A Napartovich and V PisMenniy,Proc. Intense Laser Beams, Los Angeles, California edited by R C Wade and P B Ulrich (Washington, SPIE, 1992) Vol. 1628, 331Google Scholar
  19. [19]
    V Antyuhov, A Bondarenko, A Glova, A Golubenzev, E Danshikov, O Kachurin, F Lebedev, V Lichanskiy, A Napartovich, V PisMenniy and V Yarzev,Proc. Eighth Int. Sym. on Gas Flow and Chemical Lasers Madrid, Spain edited by J M Orza and C Domingo (Washington, SPIE, 1990) Vol. 1397, 355Google Scholar
  20. [20]
    V V Vasil’tvos, V S Golubev, V Ye Zelenov, A Ye Kurushin, A A Lisin, D Yu Filimonov,Industrial Lasers and Laser Material Processing: Russian National Conference, Shatura, Russia edited by V Ya Panchenko, V S Golubev (Washington, SPIE, 1994) Vol. 2257, 90Google Scholar
  21. [21]
    A D Colley, H J Baker and D R Hall,Appl. Phys. Lett. 61, 136 (1992)CrossRefADSGoogle Scholar
  22. [22]
    S Yatsiv, A Gabay and M A Brastel,Proc. CO2 Lasers and Applications II, The Hague, The Netherlands edited by H Opower (Washington, SPIE, 1990) Vol. 1276, 142Google Scholar
  23. [23]
    T V Higgins (Ed),Laser & Optronics 7, 1920 (1988)Google Scholar
  24. [24]
    P E Jackson, H J Baker and D R Hall,Appl. Phys. Lett. 54, 1950 (1989)CrossRefADSGoogle Scholar
  25. [25]
    E F Yelden, H J J Seguin, C E Capjack, S K Nikumb, H Reshef,Opt. Quantum Electron. 24, S889 (1992)CrossRefGoogle Scholar
  26. [26]
    H Sugawara, K Kuwabara, S Takemori, A Wada and K Sasaki,Tech. Digest Conf. Laser and Electro-Optics. Anaheim, California, paper TUC 3, 54 (1984)Google Scholar
  27. [27]
    L M Holmes (Ed),Laser Focus World (PennWell Publication, 1991)27, 44Google Scholar
  28. [28]
    A K Biswas and A K Nath,J. Phys. (1998) (to appear)Google Scholar
  29. [29]
    V V Elov, VA Kuklin, N S Leshenyuk and V V Nevdakh,Sov. J. Quantum Electron. 12, 999 (1983)CrossRefGoogle Scholar
  30. [30]
    A K Nath and A K Biswas,IEEE J. Quantum Electron. 33, 1278 (1997)CrossRefADSGoogle Scholar
  31. [31]
    V S Golubev,Proc. Tenth Int. Sym. on gas flow and chemical lasers, Friedrichshafen, Germany edited by W L Bonn, H Hugel (Washington, SPIE, 1995) Vol. 2502, 111Google Scholar
  32. [32]
    J P Reilly,Gas-flow and chemical lasers, von Karman Institute for Fluid Dynamics edited by J F Wendt (Washington 1979) 129Google Scholar
  33. [33]
    H Nagai, M Hishi, M Tanaka, Y Myoi, H Wakata, T Yagi and N Tabata,IEEE J. Quantum Electron 29, 2898 (1993)CrossRefADSGoogle Scholar
  34. [34]
    A P Schwarzenbach and U W Hunziker,Proc. high power CO 2 laser systems and applications, Hamburg, Germany, edited by A Quenzer (Washington, SPIE, 1988) Vol. 1020, 43Google Scholar
  35. [35]
    B Walter, M Bohrer, D Schuocker,Proc. high power lasers and laser machining technology, Paris, France edited by M L Gaillard and A Quenzer (Washington, SPIE, 1989) Vol. 1132, 14Google Scholar
  36. [36]
    A K Nath, P Choudhary, L Abhinandan, T Reghu, R Sridhar, S Soni, A K Biswas, L B Rana, V S Rawat,Proc National Laser Symp. CAT, Indore, Feb, 6–8, 1997Google Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  1. 1.Centre for Advanced TechnologyIndoreIndia
  2. 2.Scientific Research Centre for Technological LasersShatura, Moscow RegionRussia

Personalised recommendations