Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 108, Issue 4, pp 411–416 | Cite as

A geometrical approach to Drinfeld’s quantum double

  • L. N. Zhang
Article
  • 17 Downloads

Summary

The fundamental relations in QISM have been deduced geometrically by means of our geometrical approach. The related Hopf algebraA(R) and its dualU(R) have been introduced naturally. Using double crossproducts, the Drinfeld’s quantum doubleD(A) will emerge.

PACS

03.65.Fd Algebraic methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. D. Drinfeld:Quantum Groups. Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, (1986), p. 798.Google Scholar
  2. [2]
    N. Yu. Reshetikhin:Quantized Universal Enveloping Algebras, The Yang-Baxter Equation and Invariants of Links, I. LOMI E-4-87; II. LOMI E-17-87 (1987).Google Scholar
  3. [3]
    L. Faddeev,N. Reshetikhin andL. Takhtajan:Quantum Groups, Advanced Series in Mathematical Physics, Vol. 9,Braid Group (1989).Google Scholar
  4. [4]
    N. Yu. Reshetikhin, L. A. Takhtadzhyan andL. D. Faddeev:Leningrad Math. J.,1, 193 (1990).MathSciNetGoogle Scholar
  5. [5]
    Yu. I. Manin:Quantum groups and non-commutative geometry, Publ. CRM, Université de Montreal (1988).Google Scholar
  6. [6]
    V. G. Drinfeld:Leningrad Math. J.,1, 321 (1990).MathSciNetGoogle Scholar
  7. [7]
    S. Majid:J. Mod. Phys. A,5, 1 (1990).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  • L. N. Zhang
    • 1
    • 2
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridge
  2. 2.Institute of Theoretical PhysicsAcademia SinicaBeijingP.R. China

Personalised recommendations