Wuhan University Journal of Natural Sciences

, Volume 10, Issue 1, pp 207–210 | Cite as

Robust threshold Guillou-Quisquater signature scheme

  • Wang Hong
  • Zhang Zhen-feng
  • Feng Deng-guo


The deficiencies of the first threshold Guillou-Quisquater signature scheme presented by Li-San Liu, Cheng-Kang Chu and Wen-Guey Tzeng are analysised at first, and then a new threshold Guillou-Quisquater signature scheme is presented. The new scheme is unforgeable and robust against any adaptive adversary if the base Guillou-Quisquater signature scheme is unforgeable under the chosen massage attack and computing the discrete logarithm modulo a prime is hard. This scheme can also achieve optimal resilience. However, the new scheme does not need the assumption that N is the product of two safe primes. The basic signature scheme underlying the new scheme is exactly Guillou-Quisquater signature scheme, and the additional strong computation assumption introduced by the first threshold Guillou-Quisquater scheme is weaken.

Key words

veriable secret sharing threshold cryptography cigital signature scheme robust secure multiparty computation 

CLC number

TN 918.1 TP 309 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Desmedt Y G. Threshold Cryptography.European Transaction on Telecommunications, 1994,5(4): 449–457.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Damgard I, Koprowski M. Practical Threshold RSA Signatures without a trusted Dealer.Proceedings of Advances in Cryptology EUROCRYPT 2001. Berlin: Springer-Verlag Heidelberg, 2001, 152–165.Google Scholar
  3. [3]
    Shoup V. Practical Threshold Signatures.Proceeding of Advances in Cryptology EUROCRYPT 2000. Berlin: Springer-Verlag, 2000, 207–220.Google Scholar
  4. [4]
    Gennaro R, Jarecki S, Krawczyk H,et al. Robust threshold DSS signatures.Proceedings of Advances in Cryptology-EUROCRYPT'96. Berlin: Springer-Verlag, 1996. 354–371.Google Scholar
  5. [5]
    Abdalla M, Miner S, Namprempre C. Forward Security in Threshold Signature Schemes.Proceedings of Topics in Cryptology CT-RSA 2001. Berlin: Springer-Verlag, 2001. 143–158.Google Scholar
  6. [6]
    Liu L S, Chu C K, Tzeng W G. A Threshold GQ Signature Scheme.Proceedings of Applied Cryptography and Network Security Conference ACNS 2003. Berlin: Springer-Verlag, 2003. 137–150.Google Scholar
  7. [7]
    Wang H, Feng D G. Robust Threshold FFS Signature Scheme.Proceedings of the 8 th Joint International Computer Conference, JICC 2002. Hangzhou: Zheijiang University Press, 2002. 382–384.Google Scholar
  8. [8]
    Frankel Y, MacKenzic P D, Yung M. Robust Efficient Distributed RSA-Key Generation.Proceedings of the 30 th ACM Symposium on the Theory of Computation-STOC'98. New York: ACM Press, 1998, 663–672.CrossRefGoogle Scholar
  9. [9]
    Guillou L C, Quisquater J. A Paradoxical Indentity-Based Signature Scheme Resulting from Zero-Knowledge.Proceedings of Advances in Cryptology—CRYPTO'88. Berlin: Springer-Verlag, 1988, 216–231.Google Scholar
  10. [10]
    Abo M. Robust Distributed Multiplication without Interaction.Proceedings of Advances in Cryptology-CRYPTO'99 Berlin: Springer-Verlag, 1999, 130–147.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wang Hong
    • 1
  • Zhang Zhen-feng
    • 2
  • Feng Deng-guo
    • 1
    • 2
  1. 1.State Key Laboratory of Information SecurityGraduate School of Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Software of Chinese Academy of SciencesBeijingChina

Personalised recommendations