Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 28, Issue 2, pp 341–355 | Cite as

Regge trajectories for the square-well potential

  • C. G. Bollini
  • J. J. Giambiagi
Article

Summary

From the analytic expression of theS-matrix we discuss the behaviour of the Regge trajectories for the square-well potential. First, the position of the poles for zero energy are found. For attractive potential, they are all real and infinite in number ; the value ofl being bounded from above. When the energy is increased, the poles move to the right becoming complex and approaching infinity with the energy. For negative energy they move to the left along the real axis, but eventually they become complex, approaching also infinity through complex values when the energy goes to minus infinite.

Riassunto

In base all’espressione analitica della matriceS si discute il comportamento delle traiettorie di Regge per il potenziale a buca quadrata. Dapprima si trova la posizione dei poli per energia nulla. Per potenziali attrattivi, sono tutti reali e di numéro infinite; il valore dil ha un limite superiore. Quando l’energia cresce, i poli si muovono verso destra divenendo complessi e tendono a valori infiniti con l’energia. Per energia negativa essi si muovono verso sinistra lungo l’asse reale, ma effettivamente diventano complessi, tendendo ancora a valori infiniti passando per valori complessi quando l’energia tende all’infinito negativo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. Regge:Nuovo Cimento,14, 951 (1959);18, 947 (1960).MathSciNetCrossRefMATHGoogle Scholar
  2. (2).
    G. F. Chew andS. C. Frautschi:Phys. Rev. Lett.,7, 394 (1961);8, 41 (1962).ADSCrossRefMATHGoogle Scholar
  3. (3).
    A. Bottino, A. M. Longoni andT. Kegge:Nuovo Cimento,23, 954 (1962).CrossRefGoogle Scholar
  4. (5).
    V. Singh:Phys. Rev.,127, 632 (1962).MathSciNetADSCrossRefGoogle Scholar
  5. (6).
    R. J. Squire: UCRL 10033, Lawrence Radiation Laboratory.Google Scholar
  6. (7).
    H. M. Nussenzveig:Nucl. Phys.,11, 499 (1959).CrossRefGoogle Scholar
  7. (8).
    A. O. Barut andF. Calogero:Poles in complex angular momentum for a class of soluble potentials, preprint.Google Scholar
  8. (9).
    C. G. Bollini andJ. J. Giambiagi:Nuovo Cimento,26, 619 (1962).CrossRefGoogle Scholar
  9. (10).
    G. N. Watson:Theory of Bessel Functions (Cambridge, 1922).Google Scholar
  10. (11).
    M. J. Coulomb:Bull. Sci. Math.,60, 297 (1936).Google Scholar
  11. (12).
    E. Jahnke andF. Emde:Tables of Functions (New York, 1933).Google Scholar

Copyright information

© Società Italiana di Fisica 1963

Authors and Affiliations

  • C. G. Bollini
    • 1
  • J. J. Giambiagi
    • 1
  1. 1.Departmento de Física de la Facultad de Ciencias Exactas de Buenos AiresBuenos Aires

Personalised recommendations