Geo-spatial Information Science

, Volume 7, Issue 4, pp 262–267 | Cite as

Application of integration of spatial statistical analysis with GIS to regional economic analysis

  • Chen Fei
  • Du Daosheng


This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of global Moran Coefficient, Local Moran and Local Geary. Furthermore, a user-friendly statistical module, combining spatial statistical analysis methods with GIS visual techniques, is developed in Arcview using Avenue. An example is also given to show the usefulness of this module in identifying, and quantifying the underlying spatial association patterns between economic units.

Key words

spatial statistical analysis spatial autocorrelation spatial association regional economic analysis 

CLC Number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cliff A D, Ord J K (1981)Spatial processes: models and applications London: Pion.Google Scholar
  2. 2.
    Goodchild M F (1986)Spatial autocorrelation. Norwich: GeoBooks.Google Scholar
  3. 3.
    Getis A, Ord J K (1992) The analysis of spatial association by the use of distance statistics.Geographical Analysis, 24(3): 189–206CrossRefGoogle Scholar
  4. 4.
    Ord J K, Getis A (1995) Local autocorrelation statistics: Distributional issues and an application.Geographical Analysis, 27(4):286–306CrossRefGoogle Scholar
  5. 5.
    Anselin L (1995) Local indicators of spatial association-LISA.Geographical Analysis, 27(2): 93–115CrossRefGoogle Scholar
  6. 6.
    Drummond W J (1993) GIS as a visualization tool for economic development.Comput., Environ. and Urban Systems, 17(5): 469–179CrossRefGoogle Scholar
  7. 7.
    Goodchild M, Haining R, et al. (1992) Integrating GIS and spatial data analysis: problems and possibilities.Int. J. Geographical Information Systems, 6 (5): 407–423CrossRefGoogle Scholar
  8. 8.
    Ding Y M, Fotheringham A S (1992) The integration of spatial analysis and GIS.Comput., Environ, and Urban Systems, 16(1): 3–19CrossRefGoogle Scholar
  9. 9.
    Bao S, Henry M S, Barkley D (1995) RAS: a regional analysis system integrated with arc/Info.Comput., Environ. and Urban Systems 19(1): 37–56CrossRefGoogle Scholar
  10. 10.
    Zhang Z Q, Griffith D A (1997) Developing user— friendly spatial statistical analysis modules for GIS: an example using ArcView.Comput., Environ. and Urban Systems, 21(1): 5–29CrossRefGoogle Scholar
  11. 11.
    Zhang Z Q, Griffith D A (2000) Integrating GIS components and spatial statistical analysis in DBMSs.Int. J. Geographical In formation Science, 14(6): 543–566CrossRefGoogle Scholar
  12. 12.
    Gao Z G (2001) Study on the regional economic difference and its pre-warning in Xinjiang: [Ph. D dissertation]. Beijing: Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences. (in Chinese)Google Scholar

Copyright information

© Wuhan University of Technology 2004

Authors and Affiliations

  • Chen Fei
    • 1
  • Du Daosheng
  1. 1.Economics and ManagementNanchang UniversityNanchangChina

Personalised recommendations