Russian Journal of Electrochemistry

, Volume 36, Issue 3, pp 219–226 | Cite as

Reversibility of electrode reactions involving organic compounds

  • V. V. Yanilkin


A general empirical approach allowing one to describe the kinetics and evaluate the mechanism of the electrode electron transfer reactions is offered. The approach is based on the electrode potentials, the vertical ionization potentials (oxidation), and the affinity to electron (reduction). An equation linking kinetic and thermodynamic parameters is derived. Electrode reactions involving organic compounds are discussed in polarographic terms. The conclusion is drawn that most electron transfer reactions involving organic compounds are reversible, and that the irreversibility of the net electrode reaction is due to the irreversibility of subsequent chemical and electrochemical stages. An experimental observation of the slow electron transfer is possible in the cases of a substantial reorganization of molecules in the presence of fast subsequent chemical and electrochemical reactions.


Electron Transfer Electrode Reaction Electron Transfer Reaction Dissociative Electron Transfer Reorganization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krishtalik, L.I.,Elektrodnye reaktsii: Mekhanizm elementarnogo akta (Electrode Reactions: The Mechanism of an Elementary Act), Moscow: Nauka, 1979.Google Scholar
  2. 2.
    Dneprovskii, A.S. and Temnikova, T.I.,Teoreticheskie osnovy organicheskoi khimii (Theoretical Foundations of Organic Chemistry), Leningrad: Khimiya, p. 225.Google Scholar
  3. 3.
    Marcus, R.A.,J. Chem. Phys., 1956, vol. 24, p. 966; 1962, vol. 37, p. 1835; 1964, vol. 41, p. 2624; 1965, vol. 43, p. 679.CrossRefGoogle Scholar
  4. 4.
    Marcus, R.A.,Annu. Rev. Phys. Chem., 1964, vol. 15, p. 155.CrossRefGoogle Scholar
  5. 5.
    Levich, V.G.,Adv. Electrochem. and Electrochem. Eng., 1965, vol. 4, p. 249.Google Scholar
  6. 6.
    Dogonadze, R.R., Kuznetsov, A.M., and Levich, V.G.,Electrochim. Acta, 1968, vol. 13, p. 1025.CrossRefGoogle Scholar
  7. 7.
    Saveant, J.-M. and Tessler, D.,J. Phys. Chem., 1977, vol. 81, p. 2192.CrossRefGoogle Scholar
  8. 8.
    Andrieux, C.P., Dumas-Bouchiat, J.M., and Saveant, J.-M.,J. Electroanal. Chem., 1978, vol. 87, p. 39.CrossRefGoogle Scholar
  9. 9.
    Spravochnik po elektrokhimii (A Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.Google Scholar
  10. 10.
    Frumkin, A.N., Bagotzky, VS., Iofa, Z.A., and Kabanov, B.N.,Kinetika elektrodnykh protsessov (Kinetics of the Electrode Processes), Moscow: Mosk. Gos. Univ., 1952.Google Scholar
  11. 11.
    Kriksunov, L.B., Krishtalik, L.I., and Tsionskii, V.M.,Elektrokhimiya, 1989, vol. 25, p. 692.Google Scholar
  12. 12.
    Yanilkin, V.V, Maksimyuk, N.I., Gritsenko, E.I., and Kargin, Yu.M.,Izv. Akad. Nauk SSSR, Ser. Khim., 1992, p. 1760.Google Scholar
  13. 13.
    Kargin, Yu.M., Budnikova, Yu.G., and Yanilkin, V.V.,Zh. Obshch. Khim., 1991, vol. 61, p. 1962.Google Scholar
  14. 14.
    Trasatti, S.,Ross. Khim. Zh., 1993, vol. 37, p. 7.Google Scholar
  15. 15.
    Rabalais, J.W.,Principles of Ultraviolet Photoelectron Spectroscopy, New York: Wiley, 1977, p. 454.Google Scholar
  16. 16.
    Kratkii spravochnik khimika (A Chemist’s Concise Handbook), Perel’man, V.I., Ed., Moscow: Khimiya, 1964.Google Scholar
  17. 17.
    Domesmith, L.N., Munchausen, L.L., and Houk, K.N.,J. Am. Chem. Soc., 1977, vol. 99, p. 6506.CrossRefGoogle Scholar
  18. 18.
    Billon, J.,Ann. Chim., 1962, vol. 7, p. 196.Google Scholar
  19. 19.
    Puddephat, R.J., Bancroft, G.M., and Chan, T.,Inorg. Chim. Acta, 1983, vol. 73, p. 83.CrossRefGoogle Scholar
  20. 20.
    Schifvon, G., Zecchin, S., and Cogoni, G.,J. Electroanal. Chem., 1973, vol. 48, p. 425.CrossRefGoogle Scholar
  21. 21.
    Matschiner, H., Krause, L., and Krech, F. Z.,Anorg. Allg. Chem., 1970, vol. 373, p. 1.CrossRefGoogle Scholar
  22. 22.
    Maier, J.P. and Turner, D.W.,J. Chem. Soc., Faraday Trans. II, 1973, vol. 69, p. 521.CrossRefGoogle Scholar
  23. 23.
    Zweig, A., Lancaster, J.E., Neghia, N.T., and Jura, W.T.,J. Am. Chem. Soc., 1964, vol. 86, p. 4130.CrossRefGoogle Scholar
  24. 24.
    Blokhin, M.A.,Metody rentgenospektral’nykh issledovanii (Techniques of X-ray Spectral Research), Moscow: Fizmatgiz, 1959.Google Scholar
  25. 25.
    Scholl, H. and Sochaj, K.,Electrochim. Acta, 1989, vol. 34, p. 915.CrossRefGoogle Scholar
  26. 26.
    Wipf, D.O., Kristensen, E.W., Deakin, M.R., and Wighman, R.M.,Anal. Chem., 1988, vol. 60, p. 306.CrossRefGoogle Scholar
  27. 27.
    Geiger, W.E. and Smith, D.E.,J. Electroanal. Chem., 1974, vol. 50, p. 31.CrossRefGoogle Scholar
  28. 28.
    McManis, G.E., Golovin, M.N., and Weaver, M.J.,J. Phys. Chem., 1986, vol. 90, p. 6563.CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, A.M. and Ulstrup, E.,Elektrokhimiya, 1985, vol. 21, p. 632.Google Scholar
  30. 30.
    Kojima, H. and Bard, A.J.,J. Am. Chem. Soc., 1975, vol. 97, p. 6317.CrossRefGoogle Scholar
  31. 31.
    Neikam, W. and Desmond, M.,J. Am. Chem. Soc., 1964, vol. 86, p. 4811.CrossRefGoogle Scholar
  32. 32.
    Galus, Z.,Teoreticzne Podstawy Electroanalizu Chemiczne, Warsaw: Panstw. Wyd. Naukowe, 1971.Google Scholar
  33. 33.
    Andrieux, C.P., Saveant, J.-M., and Su, K.B.,J. Phys. Chem., 1986, vol. 90, p. 3815.CrossRefGoogle Scholar
  34. 34.
    Zhuikov, V.V.,Doctoral (Chem.) Dissertation, Kazan, 1996.Google Scholar
  35. 35.
    Pysh, E. and Yang, N.,J. Am. Chem. Soc., 1963, vol. 85, p. 2124.CrossRefGoogle Scholar
  36. 36.
    Andrieux, C.P., Blocman, C., Dumas-Bouchiat, J.M., and Saveant, J.-M.,J. Am. Chem. Soc., 1979, vol. 101, p. 3431.CrossRefGoogle Scholar
  37. 37.
    Chanon, M. and Tobe, M.L.,Angew. Chem., 1982, vol. 94, p. 27.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. V. Yanilkin
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesTatarstanRussia

Personalised recommendations