Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 99, Issue 1, pp 61–66 | Cite as

Transitivity and gradient property for real group representations

  • G. Gaeta
Article
  • 10 Downloads

Summary

The conjecture that any linear group representation on a real space which is transitive on the unit sphere possesses also gradient property is proved.

PACS

02.20 Group theory 

Транзитивность и градиентное свойство вещественных групновых представлений

Резюме

Доказывается предположение, что линейное групповое представление на вещественном пространстве, которое является транзитивным на единичной сфере, также обладает градиентным свойством.

Riassunto

Si dimostra la congettura secondo cui ogni rappresentazione lineare di un gruppo che sia transitiva sulla sfera gode della proprietà gradiente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. Gaeta andP. Rossi:Nuovo Cimento B,93, 66 (1986).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    G. Cicogna, G. Gaeta andP. Rossi:J. Math. Phys., (N. Y.) 27, 447 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    D. H. Sattinger:Group Theoretic in Bifurcation Theory, Lecture Notes in Mathematics, No. 762 (Springer-Verlag, Berlin, 1979).MATHGoogle Scholar
  4. (4).
    G. Gaeta:Nuovo Cimento B,96, 147 (1986).MathSciNetADSCrossRefGoogle Scholar
  5. (5).
    D. Montgomery andH. Samelson:Ann. Math. (N. Y.),44, 454 (1943).MathSciNetCrossRefGoogle Scholar
  6. (6).
    A. A. Kirillov:Elements de la théorie des representations (MIR, Moscow, 1974).MATHGoogle Scholar
  7. (7).
    W. G. McKay andJ. Patera:Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras (Marcel Dekker, New York, N. Y., 1981).MATHGoogle Scholar
  8. (8).
    S. Helgason:Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, N. Y., 1978).MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • G. Gaeta
    • 1
  1. 1.Centre de Recherches MathematiquesUniversité de MontrealMontrealCanada

Personalised recommendations