Il Nuovo Cimento B (1971-1996)

, Volume 108, Issue 10, pp 1087–1093 | Cite as

Irreversible evolution to equilibrium for a many-body system

  • L. E. Beghian


Based on fundamental principles of quantum physics, an explanation is advanced for the irreversible behavior of a many-body system in a closed environment. Provided that the system proper may be divided into macroscopic cells, each of which may be considered to be in local equilibrium, it is demonstrated that the system will evolve irreversibly towards equilibrium.


02.50.Ey Stochastic processes 


05.20.Gg Classical ensemble theory 


05.30.Ch Quantum ensemble theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Jancel:Foundations of Classical and Quantum Statistical Mechanics (Pergamon, Oxford, 1969).Google Scholar
  2. [2]
    R. Balescu:Equilibrium and Non-Equilibrium Statistical Mechanics (Wiley, New York, N.Y., 1975).Google Scholar
  3. [3]
    O. Penrose:Rev. Mod. Phys.,42, 129 (1979).Google Scholar
  4. [4]
    H. J. Kreuzer:Nonequilibrium Thermodynamics and its Statistical Foundations (Clarendon, Oxford, 1981).Google Scholar
  5. [5]
    I. Prigogine andP. Resibois:Physica,27, 629 (1961).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    I. Prigogine:Topics in Nonlinear Physics (Springer, New York, N.Y.), 1968), p. 216.CrossRefGoogle Scholar
  7. [7]
    I. Prigogine:The Physicist’s Conception of Nature (Reidel, Dordrecht, 1973).Google Scholar
  8. [8]
    A. P. Grecos andI. Prigogine:Proceedings of the XIII Internationa Union of Phisics and Applied Physics. Conference on Statistical Physics, Haifa 1977, edited byD. Cabib, C. G. Kupersc andI. Riesssc.Google Scholar
  9. [9]
    I. Prigogine:From Being to Becoming (Freeman and Company, New York, N.Y., 1980), Chapt.8, 9.Google Scholar
  10. [10]
    L. E. Beghian:Nuovo Cimento B,107, 141 (1992).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    H. J. Kreuzer:Nonequilibrium Thermodynamics and Its Statistical Foundations (Clarendon, Oxford, 1981), p. 4.Google Scholar
  12. [12]
    W. Pauli andM. Fierz:Z. Phys.,106, 572 (1937).ADSCrossRefGoogle Scholar
  13. [13]
    N. G. Van Kampen:Physica,20, 603 (1954).MathSciNetADSCrossRefMATHGoogle Scholar
  14. [14]
    L. Van Hove:Physica,21, 517 (1955);23, 441 (1957);25, 268 (1959).MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. Meixner:Ann. Phys. (Leipzig),39, 333 (1941);Z. Phys. Chem. B,53, 235 (1943);Ann. Phys. (Leipzig),43, 244 (1943).ADSCrossRefGoogle Scholar
  16. [16]
    H. J. Kreuzer:Nonequilibrium Thermodynamics and Its Statistical Foundations (Clarendon, Oxford, 1981), p. 228.Google Scholar
  17. [17]
    H. Mori:Phys. Rev,111, 694 (1958).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1993

Authors and Affiliations

  • L. E. Beghian
    • 1
  1. 1.Department of PhysicsUniversity of Massachusetts at LowellLowellUSA

Personalised recommendations