Annali dell’Università di Ferrara

, Volume 38, Issue 1, pp 1–24 | Cite as

Some qualitative properties of incompressible multipolar materials

  • Antonín Novotný
  • Michael Růžička


Weak Solution Sobolev Space Heat Flux Qualitative Property Physical Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. NečasM. Růžička,Global solution to the incrompressible viscous-multipolar material, J. Elasticity,29 (1992), pp. 175–202.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Novotný,Viscous multipolar fluids—Physical background and mathematical theory, to appear.Google Scholar
  3. [3]
    J. Nečas—A. Novotný,Some qualitative properties of the viscous compressible multipolar heat conductive flow, to appear.Google Scholar
  4. [4]
    J. Nečas,Les méthodes directes en la thèorie des equations elliptiques, Academie, Prague.Google Scholar
  5. [5]
    J. NečasNovotnýM. Šilhavý,Global solution to the compressible isothermal flow.J. Math. Anal. Appl.,160 (1991), p. 2.Google Scholar
  6. [6]
    J. L. Lions—E. Magenes,Problèmes aux limites non homogènes et applications, Dunod, Paris.Google Scholar
  7. [7]
    J. Kurzweil,Ordinary differential equation (in Czech), SNTL, Prague.Google Scholar
  8. [8]
    H. Triebel,Interpolation Theory Function Spaces Differential Operators, VEB Deutscher Verlag, Berlin.Google Scholar
  9. [9]
    J. L. Lions,Quelques méthodes de, résolution des problèmes aux limites non linéaires, Dunod, Paris.Google Scholar
  10. [10]
    H. Gajewski—K. Gröger—K. Zacharias,Nichtlineare Operatorgleichungen und Operatordifferential-gleichungen, Akademie-Verlag, Berlin.Google Scholar

Copyright information

© Università degli Studi di Ferrara 1992

Authors and Affiliations

  • Antonín Novotný
    • 1
  • Michael Růžička
    • 2
  1. 1.Institute of Physics of the AtmosphereCz. Acad. Sci.Prague 4Czechoslovakia
  2. 2.Fachbereich MathematikUniversität LeipzigLeipzigGermany

Personalised recommendations