Folia Microbiologica

, Volume 42, Issue 5, pp 473–476 | Cite as

Influence ofPhanerochœte chrysosporium culture conditions on mitochondrial cytochrome content

  • D. Leštan
  • A. Perdih


UV-Visible diffuse reflectance spectroscopy was applied for determination of mitochondrial cytochromes in whole mycelial pellets of the basidiomycetePhanerochœte chrysosporium. The lignin-peroxidase activity and mitochondrial cytochrome content were measured in pellets of cultures grown on a growth medium with various concentrations of nitrogen and Mn(II), and with or without the addition of Tween 20. In cultures grown under conditions that induce the expression of lignin-peroxidase activity, a decrease of cytochromeaa 3 content was observed at the time of the onset of lignin-peroxidase activity.


Mitochondrial Cytochrome Lignin Peroxidase Veratryl Alcohol Mycelial Pellet Cytochrome Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asther M.G., Corrieu G., Drapron R., Odier E.: Effect of Tween 80 and oleic acid on ligninase production byPhanerochœte chrysosporium INA-12.Enz. Microb. Technol. 9, 245–249 (1987).CrossRefGoogle Scholar
  2. Bonnarme P., Delattre M., Drouet H., Corrieu G., Asther M.: Toward a control of lignin and manganese peroxidases hyper secretion byPhanerochœte chrysosporium in agitated vessels: Evidence of the superiority of pneumatic bioreactors on mechanically agitated bioreactors.Biotechnol. Bioeng. 41, 440–450 (1992).CrossRefGoogle Scholar
  3. Bonnarme P., Jeffries T.W.: Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi.Appl. Environ. Microbiol. 56, 210–217 (1990).PubMedGoogle Scholar
  4. Bumpus J.A., Tien M., Wright D., Aust S.D.: Oxidation of persistent environmental pollutants by a white rot fungus.Science 228, 1434–1436 (1985).PubMedCrossRefGoogle Scholar
  5. Jäger A., Croan S., Kirk T.K.: Production of ligninases and degradation of lignin in agitated submerged cultures ofPhanerochœte chrysosporium.Appl. Environ. Microbiol. 50, 1274–1278 (1985).PubMedGoogle Scholar
  6. Jeffries T.W., Choi S., Kirk T.K.: Nutritional regulation of lignin degradation byPhanerochœte chrysosporium.Appl. Environ. Microbiol. 42, 290–296 (1981).PubMedGoogle Scholar
  7. Keyser P., Kirk T.K., Zeikus J.G.: Ligninase enzyme system ofPhanerochœte chrysosporium: Synthesized in the absence of lignin in response to nitrogen starvation.J. Bacteriol. 135, 790–797 (1987).Google Scholar
  8. Kirk T.K., Farrell R.L.: Enzymatic “combustion”: The microbial degradation of lignin.Ann. Rev. Microbiol. 41, 465–505 (1987).CrossRefGoogle Scholar
  9. Kirk T.K., Schultz E., Connors W.J., Lorenz L.F., Zeikus J.G.: Influence of culture parameters on lignin degradation byPhanerochœte chrysosporium.Arch. Microbiol. 117, 277–285 (1978).CrossRefGoogle Scholar
  10. Leštan D., Černilec M., Perdih A.: Determination of lignin-peroxidase activity inP. chrysosporium pellets with diffuse reflectance spectroscopy.Appl. Microbiol. Biotechnol. 38, 570–573 (1993a).CrossRefGoogle Scholar
  11. Leštan D., Černilec M., Štrancar A., Perdih A.: Influence of some surfactants and related compounds on lignin-peroxidase activity ofPhanerochœte chrysosporium.FEMS Microbiol. Lett. 106, 17–22 (1993b).CrossRefGoogle Scholar
  12. Leštan D., Leštan M., Perdih A.: Physiological aspects of biosynthesis of lignin peroxidases byPhanerochœte chrysosporium.Appl. Environ. Microbiol. 60, 606–612 (1994).PubMedGoogle Scholar
  13. Leštan D., Podgornik H., Perdih A.: Analysis of fungal pellets by UV-visible spectrum diffuse reflectance spectroscopy.Appl. Environ. Microbiol. 60, 606–612 (1993c).Google Scholar
  14. Leštan D., Štrancar A., Perdih A.: Influence of some oils and surfactants on lignin-peroxidase activity, growth and lipid fatty acids ofPhanerochœte chrysosporium.Appl. Microbiol. Biotechnol. 34, 426–428 (1990).Google Scholar
  15. Linko S.: Production and characterization of extracellular lignin peroxidase from immobilizedPhanerochœte chrysosporium in a 10-L bioreactor.Enz. Microb. Technol. 10, 410–417 (1988).CrossRefGoogle Scholar
  16. Masaphy S., Lavenon D., Heins Y., Venkateswarlu K., Kelly S.L.: Evidence for cytochrome P-450 and P-450-mediated benzo[a]pyrene hydroxylation in the white rot fungusPhanerochœte chrysosporium.FEMS Microbiol. Lett. 135, 51–55 (1996).PubMedCrossRefGoogle Scholar
  17. Mileski G.J., Bumpus J.A., Jurek M.A., Aust S.D.: Biodegradation of pentachlorophenol by the white rot fungusPhanerochœte chrysosporium.Appl. Environ. Microbiol. 54, 2885–2889 (1988).PubMedGoogle Scholar
  18. Tien M., Kirk T.K.: Lignin degrading enzyme fromPhanerochœte chrysosporium: purification, characterisation and catabolytic properties of unique H2O2-requiring oxygenase.Proc. Nat. Acad. Sci. USA. 81, 2280–2284 (1984).PubMedCrossRefGoogle Scholar
  19. Williams J.N.: A method for simultaneous quantitative estimation of cytochromesa,b,c 1 andc in mitochondria.Arch. Biochem. Biophys. 107, 537–543 (1964).PubMedCrossRefGoogle Scholar
  20. Yadav J.S., Quensen IIIJ.F., Tiedje J.M., Reddy C.A.: Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungusPhanerochœte chrysosporium as evidenced by congener-specific analysis.Appl. environ. Microbiol. 61, 2560–2565 (1995).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1997

Authors and Affiliations

  • D. Leštan
    • 1
  • A. Perdih
    • 2
  1. 1.Center for Soil and Environmental Science, Department of AgronomyUniversity of LjubjanaLjubljanaSlovenia
  2. 2.Department of Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations