Advertisement

Annali dell’Università di Ferrara

, Volume 45, Issue 1, pp 339–363 | Cite as

Symétrie des opérateurs fortement hyperboliques 4×4 ayant un point triple caractéristique dansR 3

  • Jean Vaillant
Article
  • 11 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Biliographie

  1. [1]
    K. KasaharaM. Yamaguti,Strongly hyperbolic systems of linear partial equations with constant coefficients, Mem. Coll. Sc. Univ. KYOTO33 (Ser (A), (1960), pp. 1–33.MATHMathSciNetGoogle Scholar
  2. [2]
    Y. Oshime,Canonical forms of 3$3 strongly hyperbolic systems with real constant coefficients, J. Math. KYOTO Univ.,31 (1991), pp. 937–982.MATHMathSciNetGoogle Scholar
  3. [3]
    G. Strang,On strong hyperbolicity, J. Math. KYOTO Univ.,6 (1967), pp. 397–417.MATHMathSciNetGoogle Scholar
  4. [4]
    J. Vaillant,Systèmes fortement hyperboliques et systèmes symétriques, C.R.A.S. Acad. Sci. Paris, t.328—Série I (1999), pp. 407–412.MATHMathSciNetGoogle Scholar
  5. [5]
    J. Vaillant,Systèmes fortement hyperboliques, dimension réduite et symétrie [à paraître].Google Scholar
  6. [6]
    T. Nishitani,Symmetrization of a class of hyperbolic systems with real constant coefficients, Annal. Scuola Normale Sup. PISA, Ser 4, Vol.21 no 1 (1994), pp. 92–120.MathSciNetGoogle Scholar
  7. [7]
    J. Vaillant,Symetrisabilité des matrices localisées d’une matrice fortement hyperbolique, Annal. Scuola Normale Sup. PISA, Ser 4, Vol.5, no 1 (1978), pp. 405–427.MATHMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1999

Authors and Affiliations

  • Jean Vaillant
    • 1
  1. 1.MathematiquesUniversité Pierre et Marie Curie (Paris VI)Paris Cedex 05

Personalised recommendations