Metallurgical and Materials Transactions A

, Volume 18, Issue 2, pp 201–210 | Cite as

Strain induced martensite formation in stainless steel

  • D. C. Cook


The Conversion Electron and X-ray Mössbauer studies of the surface of Type 316 stainless steel at 400 K, 300 K, and 100 K show that both the substitutional and interstitial elements perturb the cubic symmetry at the iron site. The single peak of austenite is a superposition of at least five quadrupole split doublets whose magnitudes and intensities depend on the type and concentration of the impurity elements. However, when the surface of the stainless steel is plastically deformed, a layer of martensite about 5000 Å thick is formed on the austenite base. This layer consists of a mixture of 31 pct martensite with the rest being the original austenite. The magnetic environment of the iron in this martensite is controlled by the concentration of alloying elements, and the distribution of the hyperfine fields is determined by the number of nearest and next nearest neighbor impurity atoms. The magnetic field decreases linearly at first as the number of nearest neighbors increases and then follows a nonlinear trend for a number of nearest neighbors. The temperature dependence of the sublattice magnetization is different for each number of neighbors, and a Curie temperature has been estimated for each site.


Austenite Martensite Metallurgical Transaction Austenitic Stainless Steel Iron Atom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Fisher and R. J. Maciag:Handbook of Stainless Steels. McGraw-Hill: New York, NY, 1977, chs. 1–4.Google Scholar
  2. 2.
    J. A. Klostermann and W. G. Burgers:Acta Metall., 1964, vol. 12, pp. 355–60.CrossRefGoogle Scholar
  3. 3.
    U. Gonser, R. W. Grant, A. H. Muir, Jr., and H. Weidersich:Acta Metall., 1966, vol. 14, pp. 259–64.CrossRefGoogle Scholar
  4. 4.
    G. P. Huffmann and R. M. Fisher:J. App. Phys., 1967, vol. 38, pp. 735–42.CrossRefGoogle Scholar
  5. 5.
    E. E. Yurchikov, A. Z. Menshikov, and V. A. Tzurin:Proc. Conf. on Appl. of the Mössbauer Effect (Tihany), Akademia Kiado, Budapest, 1971, pp. 413–18.Google Scholar
  6. 6.
    U. Gonser:An Introduction to Mössbauer Spectroscopy, Plenum Press, New York, NY, 1971, pp. 155–79.CrossRefGoogle Scholar
  7. 7.
    S. A. Antolovich and B. Singh:Metall. Trans., 1971, vol. 2, pp. 2135–41.CrossRefGoogle Scholar
  8. 8.
    L. H. Schwartz and K. J. Kim:Metall. Trans. A, 1976, vol. 7A, pp. 1567–70.CrossRefGoogle Scholar
  9. 9.
    K. J. Kim and L. H. Schwartz:Mat. Sci. Eng., 1978, vol. 33, pp. 5–20.CrossRefGoogle Scholar
  10. 10.
    G. P. Huffman and F. E. Huggins:Mössbauer Effect and its Chemical Applications, American Chemical Society, Washington, DC, 1981, pp. 265–300.CrossRefGoogle Scholar
  11. 11.
    V. V. Sagardze, N. D. Zemtsova, E. I. Starchenko, V. A. Shakashov, and E. E. Urchikov:Fiz. Metal. Metalloved., 1983, vol. 55, pp. 99–110.Google Scholar
  12. 12.
    N. Hayashi, I. Sakamoto, T. Takahashi, and K. Kuriyama:Proc. Intl. Ion Eng. Conf., Kyoto, 1983, pp. 1919–24.Google Scholar
  13. 13.
    G. Longworth:Mössbauer Spectroscopy Applied to Inorganic Chemistry Plenum Press, New York, NY, 1984, vol. 1, pp. 227–43.CrossRefGoogle Scholar
  14. 14.
    D. C. Cook and E. Agyekum:Nucl. Instrum. Meth., 1985, vol. B12, pp. 515–20.CrossRefGoogle Scholar
  15. 15.
    D. C. Cook:Hyperfine Interactions, 1986, vol. 29, pp. 1463–66.CrossRefGoogle Scholar
  16. 16.
    C. Wivel and S. Morup:J. Phys. E., 1981, vol. 14, pp. 605–10.CrossRefGoogle Scholar
  17. 17.
    R. Vandenberghe and E. DeGrave: private communication, Laboratory of Magnetism, University of Ghent, Ghent Belgium, 1985.Google Scholar
  18. 18.
    D. D. Amarisiniwardena, E. De Grave, L. H. Bowen, and S. B. Weed:Clay Min., 1986, in press.Google Scholar
  19. 19.
    V. N. Bugayev, V. G. Gavrilyuk, V. M. Nadutov, and V. A. Tatarenko:Acta Metall., 1983, vol. 31(3), pp. 407–18.CrossRefGoogle Scholar
  20. 20.
    U. Gonser, C. J. Meechan, A. H. Muir, and H. Weidersich:J. Appl. Phys., 1963, vol. 34(8), pp. 2373–78.CrossRefGoogle Scholar
  21. 21.
    M. Lesoille and P. M. Gielen:Metall. Trans., 1972, vol. 3, pp. 2681–89.CrossRefGoogle Scholar
  22. 22.
    N. DeCristofaro and R. Kaplow:Metall. Trans. A., 1977, vol. 8A, pp. 35–44.CrossRefGoogle Scholar
  23. 23.
    D. L. Williamson, K. Nakazawa, and G. Krauss:Metall. Trans. A, 1979, vol. 10A, pp. 1351–63.CrossRefGoogle Scholar
  24. 24.
    T. Kamenova and R. Banov:Bulg. J. Phys., 1982, vol. 9, pp. 138–50.Google Scholar
  25. 25.
    V. G. Gavrilyuk and V. M. Nadutov:Phys. Met. Metall., 1983, vol. 55, pp. 520–27.Google Scholar
  26. 26.
    J. M. Genin and P. A. Flinn:Trans. TMS-AIME, 1968, vol. 242, pp. 1491–30.Google Scholar
  27. 27.
    C. E. Johnson, M. S. Ridout, T. E. Cranshaw, and P. E. Madsen:Phys. Rev. Lett., 1961, vol. 6, pp. 450–51.CrossRefGoogle Scholar
  28. 28.
    G. K. Wertheim and J. H. Wernick:Phys. Rev., 1961, vol. 123, pp. 755–57.CrossRefGoogle Scholar
  29. 29.
    M. B. Stearns:Phys. Rev., 1963, vol. 129, pp. 1136–44.CrossRefGoogle Scholar
  30. 30.
    G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathius:Phys. Rev., 1963, vol. 131, pp. 183–90.CrossRefGoogle Scholar
  31. 31.
    C. E. Johnson, M. S. Ridout, and T. E. Cranshaw:Proc. Phys. Soc., 1963, vol. 81, pp. 1079–90.CrossRefGoogle Scholar
  32. 32.
    G. K. Wertheim, V. Jaccarino, J. H. Wernick, and D. N. E. Buchanan:Phys. Rev. Lett., 1964, vol. 12, pp. 24–27.CrossRefGoogle Scholar
  33. 33.
    M. B. Stearns:J. Appl. Phys., 1964, vol. 35, pp. 1095–96.CrossRefGoogle Scholar
  34. 34.
    M. B. Stearns and S. S. Wilson:Phys. Rev. Lett., 1964, vol. 13, pp. 313–15.CrossRefGoogle Scholar
  35. 35.
    T. E. Cranshaw, C. E. Johnson, M. S. Ridout, and G. A. Murray:Phys. Lett., 1966, vol. 21, pp. 481–83.CrossRefGoogle Scholar
  36. 36.
    M. B. Stearns:Phys. Rev., 1966, vol. 147, pp. 439–53.CrossRefGoogle Scholar
  37. 37.
    H. L. Marcus and L. H. Schwartz:Phys. Rev., 1967, vol. 162, pp. 259–62.CrossRefGoogle Scholar
  38. 38.
    H. L. Marcus, M. E. Fine, and L. H. SchwartzJ. Appl. Phys., 1967, vol. 38, pp. 4750–58.CrossRefGoogle Scholar
  39. 39.
    F. E. Fujita:Topics in Applied Physics, Springer-Verlag, New York, NY, 1975, vol. 5, pp. 201–36.Google Scholar
  40. 40.
    U. Gonser, S. Nasu, W. Keune, and O. Weis:Sol. St. Comm., 1975, vol. 17, pp. 233–36.CrossRefGoogle Scholar
  41. 41.
    T. Sohmura and F. E. Fujita:Sol. St. Comm., 1978, vol. 25, pp. 43–46.CrossRefGoogle Scholar
  42. 42.
    J. B. Muller and J. Hesse:Z. Phys. B, 1983, vol. 54, pp. 43–48.CrossRefGoogle Scholar
  43. 43.
    B. Huck, F. Savrenbach, and J. Hesse:Hyperfine Interactions, 1986, vol. 28, pp. 479–82.CrossRefGoogle Scholar
  44. 44.
    J. Hesse and E. Hagen:Hyperfine Interactions, 1986, vol. 28, pp. 475–78.CrossRefGoogle Scholar
  45. 45.
    S. S. Hanna, R. S. Preston, and J. Heberle:Proceedings of the Second International Conference on the Mössbauer Effect, France, Wiley and Son, New York, NY, 1961, pp. 85–89.Google Scholar
  46. 46.
    J. Heberle:Mössbauer Effect Methodology Plenum Press, New York, NY, vol. 7, pp. 299–308.Google Scholar
  47. 47.
    J. A. Sawicki and B. D. Sawicka:Hyperfine Interactions, 1983, vol. 13, pp. 199–219.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., and American Society for Metals 1987

Authors and Affiliations

  • D. C. Cook
    • 1
  1. 1.Department of Physics, OldDominion UniversityNorfolk

Personalised recommendations