Metallurgical and Materials Transactions B

, Volume 6, Issue 1, pp 175–182 | Cite as

Theoretical model of the submerged arc welding process

  • Barry T. Rubin
Process Control


Expressions for the direct current and melting rate of wire electrodes in the submerged arc welding process are derived via the principles of irreversible thermodynamics. The melting rate of the consumable wire electrode under quasi steady state conditions consists of eight contributions: 1) Peltier heating effect, 2) Arc heating effect, 3) Contact resistance effect, 4) Radiation heat transfer effect, 5) Joule heating effect, 6) Heat conduction effect, 7) Melting rate effect of electrolyte flux, 8) Melting rate effect of the sublayer zone. Application of the general theoretical melting rate to a limiting case of practical interest reveals good agreement between theoretical predictions and experimental results. The affect of polarity reversal on melting rate is explained in terms of thermionic emission phenomena.


Metallurgical Transaction Energy Flux Molten Pool Melting Rate Consumable Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Jackson:Weld. J. Res. Supp., 1960, vol. 39, pp. 129s-40s.Google Scholar
  2. 2.
    Ibid., pp. 1772–90s.Google Scholar
  3. 3.
    Ibid., pp. 225s-30s.Google Scholar
  4. 4.
    T. C. Harman, J. H. Cahn, and M. J. Logan:J. Appl. Phys., 1959, vol. 30, pp. 1351–59.CrossRefGoogle Scholar
  5. 5.
    C. A. Domenicali:Phys. Rev., 1953, vol. 90, pp. 877–81.CrossRefGoogle Scholar
  6. 6.
    R. Parsons:Modern Aspects of Electrochemistry, J. O'M. Bockris, ed., No. 1., Ch. 3, pp. 103–26, Butterworths, London, 1954.Google Scholar
  7. 7.
    C. Herring and M. H. Nichols:Rev. Mod. Phys., 1949, vol. 21, pp. 190–94.CrossRefGoogle Scholar
  8. 8.
    J. L. Wilson, G. E. Claussen and C. E. Jackson:Weld. J. Res. Supp., 1956, vol. 35, pp. 1s-8s.Google Scholar
  9. 9.
    Thermophysical Properties of High Temperature Solid Materials: Y. S. Touloukian, ed., vol. 1, pp. 581, 585, 578, MacMillan Co., N. Y., Coller-MacMillan Ltd., London, 1967.Google Scholar
  10. 10.
    R. O. Jenkins and W. G. Trodden:Electron and Ion Emission from Solids, pp. 64, 65, Dover Publ., Inc., N. Y., 1965.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1975

Authors and Affiliations

  • Barry T. Rubin
    • 1
  1. 1.Department of MetallurgyUniversity of AstonBirminghamEngland

Personalised recommendations