Advertisement

Annali dell’Università di Ferrara

, Volume 37, Issue 1, pp 55–64 | Cite as

Algebraic 2-vector bundles on ruled surfaces

  • Vasile Brînzânescu
Article
  • 36 Downloads

Keywords

Exact Sequence Algebraic Structure Ample Divisor Projection Formula Free Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Bânicâ,Topologisch triviale holomorphe Vektor bündel aufn, J. Reine Angew. Math.,344 (1983), pp. 102–119.MATHMathSciNetGoogle Scholar
  2. [2]
    V. BrînzânescuM. Stoia,Topologically trivial algebraic 2-vector bundles on ruled surfaces I, Rev. Roumaine Math. Pures Appl.,29 (1984), 8, pp. 611–673.Google Scholar
  3. [3]
    V. Brînzânescu—M. Stoia,Topologically trivial, algebraic 2-vector bundles on ruled surfaces II, Lect. Notes in Math.,1056 (1984).Google Scholar
  4. [4]
    A. Grothendieck,Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math.,79 (1956).Google Scholar
  5. [5]
    R. Hartshorne Algebraic Geometry, Springer-Verlag (1977).Google Scholar
  6. [6]
    H. J. HoppeH. Spindler,Modulräume stabiler 2-Bündel auf Regelflächen, Math. Ann.,249 (1980), pp. 127–140.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Kleiman,Les théorèmes de finitude pour le foncteur de Picard, S.G.A.6, exposé XIII, Lect. Notes in Math.,225 (1971).Google Scholar
  8. [8]
    Ch. Okonek—M. Schneider—H. Spindler,Vector bundles on complex projective spaces, Progress Math.,3 (1980), Birkhauser.Google Scholar
  9. [9]
    R. L. E. Schwarzenberger,Vector bundles on algebraic surfaces, Proc. London Math. Soc.,11 (1961).Google Scholar
  10. [10]
    F. Takemoto,Stable vector bundles on algebraic surfaces, Nagoya Math. J.,47 (1972), pp. 29–48.MATHMathSciNetGoogle Scholar
  11. [11]
    Wu Wen-Tsien,Sur les espaces fibrés, Publ. Inst. Univ. Strassbourg, XI, Paris (1952).Google Scholar

Copyright information

© Università degli Studi di Ferrara 1991

Authors and Affiliations

  • Vasile Brînzânescu
    • 1
    • 2
  1. 1.Institute of MathematicsBucharestRomania
  2. 2.Mathematisches Institut der UniversitätD-München 2Germany

Personalised recommendations