Annali dell’Università di Ferrara

, Volume 35, Issue 1, pp 25–33 | Cite as

A note on the zero sets ofA(B) andA B) in transverse curves

  • Carme Cascante


In this note we give two constructive proofs concerning the zero sets ofA(B) andA (B) of transverse curves contained in the unit sphere of C n .


Holomorphic Function Dominate Convergence Theorem Constructive Proof Function Satisfying Condition Carleson Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Si forniscono due prove costruttive riguardanti l’insieme degli zeri diA(B) eA (B) delle curve traverse contenute nella sfera di C n .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bishop,A general Rudin-Carleson theorem, Proc. Amer. Math. Soc.,13 (1962), pp. 140–143.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. BrunaJ. M. Ortega,Interpolation by holomorphic functions smooth to the boundary in the unit ball of C n, Mathematische Annalen,274 (1986), pp. 527–575.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. ChaumatA. M. Chollet,Ensembles de zéros et d’interpolation à la frontière de domains strictement pseudoconvexes, Arkiv Math.,24 (1986), pp. 27–57.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Chaumat—A. M. Chollet,Complex Analysis II, Proceedings Maryland 85–86, Lecture Notes, 1276, pp. 66–78.Google Scholar
  5. [5]
    A. M. DavieB. Oksendal,Peak interpolation, sets for some algebras of analytic functions, Pacific J. Math.,41 (1972), pp. 81–87.MathSciNetGoogle Scholar
  6. [6]
    Hofman,Banach spaces of analytic functions (Prentice-Hall series in Modern Analysis, 1982).Google Scholar
  7. [7]
    A. Nagel,Cauchy trasnforms of measures, and a characterization of smooth peak interpolation sets for the ball algebra, Rocky Mountain J. Math. (1979), pp. 299–305.Google Scholar
  8. [8]
    W. Rudin,Function theory in the unit ball of C n, Springer-Verlag, New York (1980).MATHGoogle Scholar
  9. [9]
    B. A. TaylorD. L. Williams,Ideals in rings of analytic functions with smooth boundary values, Can. J. Math., XXII (1979), pp. 1266–1283.MathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1989

Authors and Affiliations

  • Carme Cascante
    • 1
  1. 1.Dept. de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations