Advertisement

Annali dell’Università di Ferrara

, Volume 27, Issue 1, pp 147–158 | Cite as

Forza agente su una sfera in un fluido viscoso con memoria

  • Mauro Benati
Article
  • 16 Downloads

Riassunto

Si affronta il problema del moto di un corpo di forma sferica in un fluido viscoso incomprimibile, infinitamente esteso, con memoria non evanescente. Si assume che il fluido ed il corpo siano in quiete fino ad un istante fissato e che, successivamente, il corpo sia soggetto ad un moto traslatorio. In tali condizioni si determina il moto del fluido originato dal moto del corpo e l’azione del fluido sul corpo stesso.

Summary

The problem of the motion of a sphere in a viscous incompressible fluid of unlimited extent is examined, under the assumption that the memory of the fluid does not fade in time. The fluid and the sphere are assumed to be at rest up to a fixed time; subsequently the sphere is allowed to move without rotation. The motion of the fluid caused by the motion of the sphere and the action of the fluid on the sphere are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    A. B. Basset,A Treatise on Hydrodynamics, vol. 2, Dover Publ., New York (1961).Google Scholar
  2. [2]
    J. Boussinesq,Theorie analytique de la chauleur, vol. 2, Gauthier-Villars, Paris (1903).Google Scholar
  3. [3]
    C. W. Oseen,Hydrodynamik, Leipzig (1927), pp. 114–134.Google Scholar
  4. [4]
    C. M. Tchen,Mean Value and Correlation Problems Connected with the Motion of Small Particles in a Turbulent Fluid, Ph. D. thesis, Delft (1947).Google Scholar
  5. [5]
    S. CorrsinJ. Lumley,On the equation of motion for a particle in turbulent fluid, App. Sci. Research,6-A (1956), p. 114.MathSciNetGoogle Scholar
  6. [6]
    J. O. Hinze,Turbulence, Mc. Graw-Hill, New York (1959).Google Scholar
  7. [7]
    S. L. Soo,Equation of motion of a solid particle suspended in a fluid, Phys. Fluids,18 (1975), p. 263.MATHCrossRefGoogle Scholar
  8. [8]
    R. Ray,On the equation of particle motion in a generalized and relative system, Tensor,34 (1980), p. 360.MathSciNetGoogle Scholar
  9. [9]
    Yu. A. Buevich,Motion resistance of a particle suspended in a turbulent medium, J. Izv. AN SSSR Mekhanika Zhidkosti i Gaza,1 (1966), pp. 182–183.Google Scholar
  10. [10]
    F. BampiA. Morro,Mixture approach to a model for sediment transport, Phys. Fluids,24 (1981), pp. 209–213.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Morro,Wave propagation in thermo-viscous materials with hidden variables, Arch. Mech.,32 (1980), pp. 145–161.MATHMathSciNetGoogle Scholar
  12. [12]
    A. Morro,Acceleration waves in thermo-viscous fluids, Rend. Sem. Mat. Univ. Padova,63 (1980), pp. 169–184.MathSciNetGoogle Scholar
  13. [13]
    F. BampiA. Morro,Viscous fluids with hidden variables and hyperbolic systems, Wave motion2 (1980), pp. 153–157.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    F. BampiA. Morro,Nonstationary thermodynamics and wave propagation in heat-conducting viscous fluids, J. Phys., A14 (1981), pp. 631–638.CrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Del PieroM. E. GurtinP. Podio Guidugli,Seminari di Elasticità Lineare, Quaderno C.N.R., Ed. Tec. Scientifica, Pisa 1978.Google Scholar
  16. [16]
    E. H. Dill,Simple Materials with Fading Memory, in Continuum Physics ed. by A. C. Eringen, Academic Press, New York (1975).Google Scholar
  17. [17]
    B. D. ColemanM. E. Gurtin,Thermodynamics with internal state variables, J. Chem. Phys.,47 (1967), pp. 597–613.CrossRefGoogle Scholar
  18. [18]
    W. A. Day,Entropy and hidden variables in continuum thermodynamics, Arch. Rational Mech. Anal.,62 (1976), pp. 367–389.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    N. S. KoshlyakovM. M. SmirnovE. B. Gliner,Differential equations of mathematical physics, North-Holland Publ., Amsterdam (1964).MATHGoogle Scholar
  20. [20]
    A. N. TikhonovA. A. Samarkii,Equations of Mathematical Physics, Pergamon Press, Oxford, 1963.MATHGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1981

Authors and Affiliations

  • Mauro Benati
    • 1
  1. 1.Istituto di MatematicaUniversità di GenovaGenova

Personalised recommendations