Annali dell’Università’ di Ferrara

, Volume 34, Issue 1, pp 21–47 | Cite as

Relaxation of autonomous functionals with discontinuous integrands

  • Luigi Ambrosio


Weak Solution Strong Solution Lower Semicontinuous Lipschitz Domain Borel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Ambrosio,Nuovi risultati sulla semicontinuità inferiore di certi funzionali integrali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,79, (5), pp. 82–89.Google Scholar
  2. [2]
    L. Ambrosio,New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Fis. Natur.,105 (1987), pp. 1–42MathSciNetGoogle Scholar
  3. [3]
    L. Ambrosio—O. Ascenzi—G. Buttazzo,Lipschitz regularity for minimizers of integral functionals with high discontinuous integrands, Preprint University of Pisa, to appear on the Journal of Mathematical Analysis and Applications.Google Scholar
  4. [4]
    L. Ambrosio—G. Buttazzo—A. Leaci,Continuous operators of the form T f (u)=f(x, u, Du), submitted to Boll. Un. Mat. Ital.Google Scholar
  5. [5]
    G. ButtazzoG. Dal Maso,A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Caratheodory integrand, J. Math. Pures Appl.,64 (1985), pp. 337–361.MathSciNetGoogle Scholar
  6. [6]
    G. ButtazzoG. Dal Maso,Λ-limits of integral functionals, J. Analyse Math.,37 (1980), pp. 145–185.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. ButtazzoA. Leaci,A continuity theorem for operators from W 1, q (Ω) into L r (Ω), J. Funct. Anal.,58 (1984), pp. 216–224.CrossRefMathSciNetGoogle Scholar
  8. [8]
    G. ButtazzoA. Leaci,Relaxation results for a class of variational integrals, J. Funct. Anal.,61 (1985), pp. 360–377.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. CastaingM. Valadier,Convex analysis and measurable multifunctions, Lecture Notes in Mathematics.,580, Springer-Verlag, Berlin (1977).MATHGoogle Scholar
  10. [10]
    L. Cesari,Optimization. Theory and Applications, Springer-Verlag, Berlin (1983).MATHGoogle Scholar
  11. [11]
    I. EkelandR. Teman,Convex Analysis and Variational Problems, North-Holland, Amsterdam (1978).Google Scholar
  12. [12]
    D. GilbargN. S. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).MATHGoogle Scholar
  13. [13]
    E. De GiorgiG. ButtazzoG. Dal Maso,On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,74 (1983), pp. 274–282.MATHMathSciNetGoogle Scholar
  14. [14]
    F.C. Liu,A Luzin type property of Sobolev functions, Indiana Univ. Math. J.,26 (1977).Google Scholar
  15. [15]
    P. MarcelliniC. Sbordone,Semicontinuity problems in the calculus of variations, Nonlinear Anal.,4 (1980), pp. 241–257.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. MarcusV. J. Mizel,Absolute continuity of tracks and mappings of Sobolev spaces, Arch. Rational. Mech. Anal.,45 (1972), pp. 294–320.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    J. Serrin,On the definition and properties of certain variational integrals, Trans. Amer. Mat. Soc.,101 (1961), pp. 139–167.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. SerrinD. E. Varberg,A general chain rule for derivatives and the change of variables formula for the Lebesque integral, Amer. Math. Monthly,76 (1969), pp. 514–520.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1988

Authors and Affiliations

  • Luigi Ambrosio
    • 1
  1. 1.Scuola Normale SuperiorePisa

Personalised recommendations