Annali dell’Università di Ferrara

, Volume 51, Issue 1, pp 173–181 | Cite as

The duality between algebras and coalgebras

  • Florin F. Nichita
  • Samuel D. Schack


In this paper we introduce the category of Yang-Baxter structures. We give examples of objects in this category. We construct full and faithful embbedings from the categories of algebra and coalgebra structures to the category of Yang-Baxter structures. Then we give a new duality theorem which extends the duality between finite dimensional algebras and coalgebras.


Hopf Algebra Duality Theorem Finite Dimensional Algebra Monoidal Functor Coalgebra Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In questo articolo introduciamo la categoria delle strutture di Yang-Baxter. Diamo esempi di oggetti in questa categoria. Costruiamo immersioni piene e fedeli dalle categorie di algebre e coalgebre alla categoria di strutture di Yang-Baxter. Infine diamo un nuovo teorema di dualità che estende la dualità tra algebre e coalgebre di dimensione finita.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Abe,Hopf algebras, Cambridge University Press, Cambridge, 1977.Google Scholar
  2. [2]
    T. Brzeziński—F. F. Nichita,Yang-Baxter systems and entwining structures, to appear in Communications in Algebra.Google Scholar
  3. [3]
    S. Dascalescu—C. Nastasescu—S. Raianu,Hopf algebras. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 235, Marcel Dekker, Inc., New York.Google Scholar
  4. [4]
    S. DascalescuF. F. Nichita,Yang-Baxter operators arising from (co)algebra structures, Communications in Algebra, Vol.27 (12), (1999), pp. 5833–5845.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Kassel,Quantum groups, Graduate Texts in Mathematics 155 (1995), Springer Verlag.Google Scholar
  6. [6]
    L. LambeD. Radford,Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach, Mathematics and its Applications, 423. Kluwer Academic Publishers, Dordrecht, 1997.MATHGoogle Scholar
  7. [7]
    R. G. Larson J. Towber,Two dual classes of bialgebras related to the concept of “quantum groups” and “quantum Lie algebra”, Communications in Algebra,19 (1991), pp. 3295–3345.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Massuyeau—F. F. Nichita,Yang-Baxter operators arising from algebra structures and the Alexander polynomial of knots, to appear in Communications in Algebra.Google Scholar
  9. [9]
    S. A. Morris,Pontryagin duality and the structure of locally compact Abelian groups, Cambridge University Press, 1977.Google Scholar
  10. [10]
    F. F. Nichita,Self-inverse Yang-Baxter operators from (co)algebra structures, Journal of Algebra, Volume218, Number 2, (1999), pp. 738–759.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    F. F. Nichita—D. Parashar,Coloured Yang-Baxter operators, in preparation.Google Scholar
  12. [12]
    F. F. Nichita—B. Zielinski,The duality between corings and ring extensions, in preparation.Google Scholar
  13. [13]
    P. Nuss,Noncommutative descent and non-abelian cohomology, K-Theory 12 (1997), no. 1, pp. 23–74.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. E. Radford,Solutions to the quantum Yang-Baxter equation arising from pointed bialgebras, Trans. Amer. Math. Soc.,343 (1994), pp. 455–477.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. E. Sweedler,Hopf algebras,W. A. Benjamin, Inc., New York, 1969.Google Scholar
  16. [16]
    A. Van Daele,An algebraic framework for group duality, Adv. Math.,140 (1998), pp. 323–366.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2005

Authors and Affiliations

  • Florin F. Nichita
    • 1
  • Samuel D. Schack
    • 2
  1. 1.Institute of Mathematics of the Romanian AcademyBucharestRomania
  2. 2.Department of Mathematics, University at BuffaloThe State University of New YorkBuffaloU.S.A.

Personalised recommendations