Molecular Biotechnology

, Volume 2, Issue 2, pp 179–195 | Cite as

Herpes simplex virus vectors for gene therapy

  • David S. Latchman


Herpes simplex virus (HSV) has a number of advantages as a vector for delivering specific genes to the nervous system. These include its large size, wide host range, and its ability to establish long-lived asymptomatic infections in neuronal cells in which a specific region of the viral genome continues to be expressed. Unfortunately, the large size of this virus and difficulty in manipulating it has led to its use as a vector lagging behind that of other, smaller viruses such as the retroviruses. In addition, the virus's ability to replicate lytically in the brain, under some circumstances, causing encephalitis, has led to fears about its potential safety for ultimate use in humans. This review will discuss a number of new approaches that are aimed at rendering simpler the insertion of foreign genes into the virus and making it as safe as possible. Ultimately, these advances offer real hope for the use of HSV vectors in gene therapy procedures.

Index Entries

Herpes simplex virus viral vectors neuronal cells gene therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, A. D. (1992) Human gene therapy comes of age.Nature 357, 455–460.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol. Cell. Biol. 10, 4239–4242.PubMedGoogle Scholar
  3. 3.
    Spear, P. G. and Roizman, B. (1980) Herpes simplex viruses, inDNA Tumour Viruses (Tooze, J., ed.), 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 615–746.Google Scholar
  4. 4.
    Elion, G. B., Furman, P. A., Fyfe, J. A., de Miranda, P., Beauchamp, L., and Shaeffer, H. J. (1977) Selectivity of action of an anti-herpetic agent 9-(2-hydroxyethoxymethyl) guanine.Proc. Natl. Acad. Sci. USA 74, 5716–5720.PubMedCrossRefGoogle Scholar
  5. 5.
    Roizman, B. and Sears, A. E. (1987) An inquiry into the mechanisms of herpes simplex virus latency.Ann. Rev. Microbiol. 41, 543–571.CrossRefGoogle Scholar
  6. 6.
    Latchman, D. S. (1990) Molecular Biology of herpes simplex virus latency.J. Exp. Pathol. 71, 133–141.Google Scholar
  7. 7.
    Vahlne, A., Svennerholm, B., and Lycke, E. (1979) Evidence of herpes simplex virus type-selective receptors on cellular plasma membranes.J. Gen. Virol. 44, 217–225.PubMedGoogle Scholar
  8. 8.
    Morgan, C., Rose, H. M., and Mednis, B. (1968) Electron microscopy of herpes simplex virus I. Entry.J. Virol. 2, 507–516.PubMedGoogle Scholar
  9. 9.
    Honess, R. W. and Roizman, B. (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of three groups of viral proteins.J. Virol. 14, 8–19.PubMedGoogle Scholar
  10. 10.
    Watson, R. J., Preston, C. M., and Clements, J. B. (1979) Separation and characterization of herpes simplex virus type I immediate-early mRNAs.J. Virol. 31, 42–52.PubMedGoogle Scholar
  11. 11.
    Campbell, M. E. M., Palfreyman, J. W., and Preston, C. M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate-early transcription.J. Mol. Biol. 180, 1–19.PubMedCrossRefGoogle Scholar
  12. 12.
    O'Hare, P. and Goding, C. R. (1988) Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation.Cell 52, 435–445.PubMedCrossRefGoogle Scholar
  13. 13.
    Pereira, L., Wolff, M. H., Fenwick, M., and Roizman, B. (1977) Regulation of herpes virus macromolecular synthesis V. Properties of alpha polypeptides made in HSV-1 and HSV-2 infected cells.Virology 77, 733–749.PubMedCrossRefGoogle Scholar
  14. 14.
    Preston, C. M. (1979) Control of herpes simplex virus type I mRNA synthesis in cells infected with wild-type virus or the temperature sensitive mutant tsK.J. Virol. 29, 275–284.PubMedGoogle Scholar
  15. 15.
    Sears, A. E., Halliburton, I. W., Meignier, B., Silver, S., and Roizman, B. (1985) Herpes simplex virus I mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice.J. Virol. 55, 338–346.PubMedGoogle Scholar
  16. 16.
    Sacks, W. R., Greene, C. C., Aschman, D. P., and Schaffer, P. A. (1985) Herpes simplex virus Type 1 ICP27 is an essential regulatory protein.J. Virol. 55, 796–805.PubMedGoogle Scholar
  17. 17.
    Stow, N. D. and Stow, E. C. (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate-early polypeptide Vmw110.J. Gen. Virol. 67, 2571–2585.PubMedGoogle Scholar
  18. 18.
    Dubbs, D. R. and Kit, S. (1964) Mutant strains of herpes simplex virus deficient in thymidine kinase-inducing activity.Virology 22, 493–502.PubMedCrossRefGoogle Scholar
  19. 19.
    Holland, L. E., Anderson, K. P., Shipman, C., and Wagner, E. K. (1980) Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species.Virology 101, 10–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Roizman, B. (1979) The organization of herpes simplex virus genomes.Ann. Rev. Gen. 13, 25–57.CrossRefGoogle Scholar
  21. 21.
    Poffenberger, K. L. and Roizman, B. (1985) Studies on a non-inverting genome of a viable herpes simplex virus.J. Virol. 53, 589–595.Google Scholar
  22. 22.
    Vlazny, D. A. and Frenkel, N. (1981) Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes.Proc. Natl. Acad. Sci. USA 78, 742–746.PubMedCrossRefGoogle Scholar
  23. 23.
    Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eukaryotic defective-virus cloning amplifying vector.Cell 30, 295–304.PubMedCrossRefGoogle Scholar
  24. 24.
    Stow, N. D., Murray, M. D., and Stow, E. C. (1986) Cis-acting signals involved in the replication and packaging of herpes simplex virus type-1 DNA.Cancer Cells 4, 497–507.Google Scholar
  25. 25.
    Jacob, R. J., Morse, L. S., and Roizman, B. (1979) Anatomy of herpes simplex virus DNA XII. Accumulation of head to tail concatamers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA.J. Virol. 29, 448–457.PubMedGoogle Scholar
  26. 26.
    Mocarski, E. S. and Roizman, B. (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA.Cell 31, 89–97.PubMedCrossRefGoogle Scholar
  27. 27.
    Deiss, L. P. and Frenkel, N. (1986) Herpes simplex virus amplicon: cleavage of concatameric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence.J. Virol. 57, 933–941.PubMedGoogle Scholar
  28. 28.
    Croen, K. D., Ostrove, J. M., Dragovic, L. J., Smialek, J. E., and Straus, S. E. (1987) Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate-early gene anti-sense transcript by in situ hybridization.New Engl. J. Med. 317, 147–142.CrossRefGoogle Scholar
  29. 29.
    Stevens, J. G., Wagner, E. K., DevipRao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurons.Science 235, 1056–1059.PubMedCrossRefGoogle Scholar
  30. 30.
    Lillycrop, K. A., Dent, C. L., Wheatley, S. C., Beech, M. N., Ninkina, N. N., Wood, J. N., et al. (1991) The octamer binding protein Oct-2 respresses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons.Neuron 7, 381–390.PubMedCrossRefGoogle Scholar
  31. 31.
    Ho, H. Y. (1992) Herpes simplex virus latency: molecular aspects.Prog. Med. Virol. 39, 76–115.PubMedGoogle Scholar
  32. 32.
    Steiner, I., Spivack, J. G., Lirette, R. P., Brown, S. M., MacLean, A. R., Subak-Sharpe, J. H., et al. (1989) Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection.EMBO J. 8, 505–511.PubMedGoogle Scholar
  33. 33.
    Deshmane, S. L. and Fraser, N. W. (1989) During latency herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure.J. Virol. 63, 943–947.PubMedGoogle Scholar
  34. 34.
    Roizman, B. and Jenkins, F. J. (1985) Genetic engineering of novel genomes of large DNA viruses.Science 229, 1208–1214.PubMedCrossRefGoogle Scholar
  35. 35.
    Sheldrick, P., Laithier, M., Lando, D., and Ryhiner, M. L. (1973) Infectious DNA from herpes simplex virus: infectivity of double stranded and single stranded molecules.Proc. Natl. Acad. Sci. USA 70, 3621–3625.PubMedCrossRefGoogle Scholar
  36. 36.
    Brown, S. M., Ritchie, D. A., and Subak-Sharpe, J. H. (1973) Genetic studies with herpes simplex virus type 1.J. Gen. Virol. 18, 329–346.PubMedCrossRefGoogle Scholar
  37. 37.
    Gorman, C. M. (1985) High efficiency gene transfer into mammalian cells, inDNA Cloning, a Practical Approach, (Glover, D. M., ed), vol. 2, IRL Press, Oxford, pp. 143–190.Google Scholar
  38. 38.
    Macpherson, I. and Stoker, M. (1962) Polyoma transformation of hamster cell clones—an investigation of the genetic factors affecting cell competence.Virology 16, 147–151.PubMedCrossRefGoogle Scholar
  39. 39.
    Tackney, C., Cachianes, G., and Silverstein, S. (1984) Transduction of the chinese hamster ovaryaprt gene by herpes simplex virus.J. Virol. 52, 606–614.PubMedGoogle Scholar
  40. 40.
    Palello, T. D., Hidaka, Y., Silverman, L. J., Levine, M., Glorioso, J., and Kelley, W. N. (1989) Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vectors.Gene 80, 137–144.CrossRefGoogle Scholar
  41. 41.
    Ho, D. Y. and Mocarski, E. S. (1988) β-galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus infected mouse.Virology 167, 279–283.PubMedCrossRefGoogle Scholar
  42. 42.
    Olson, L. C., Buescher, E. L., Artenstein, M. S., and Parteman, P. D. (1967) Herpesvirus infections of the human central nervous system.New Engl. J. Med. 277, 1271–1277.PubMedCrossRefGoogle Scholar
  43. 43.
    Dobson, A. T., Margolis, T. P., Sedarati, F., Stevens, J. G., and Feldman, L. T. (1990) A latent nonpathogenic HSV-1 derived vector stably expresses β-galactosidase in mouse neurons.Neuron 5, 353–360.PubMedCrossRefGoogle Scholar
  44. 44.
    Frenkel, N. (1981) Defective interfering herpes viruses, inThe Human Herpes Viruses—An Interdisciplinary Prospective (Nahmias, A. J., Dowdle, W. R., and Schcrazy, R. S., eds.), Elsevier, New York, pp. 91–120.Google Scholar
  45. 45.
    Kwong, A. D. and Frenkel, N. (1985) The herpes simplex virus amplicon IV. Efficient expression of a chimeric chicken ovalbumin gene amplified within defective virus genomes.Virology 142, 421–425.PubMedCrossRefGoogle Scholar
  46. 46.
    Geller, A. I. and Breakfield, X. O. (1988) A defective HSV-1 vector expressesEscherichia coli beta-galactosidase in cultured peripheral neurons.Science 241, 1667–1669.PubMedCrossRefGoogle Scholar
  47. 47.
    Geller, A. I. and Freese, A. (1990) A defective HSV-1 vector expressesE. coli β-galactosidase in cultured CNS neurons.Proc. Natl. Acad. Sci. USA 87, 1149–1153.PubMedCrossRefGoogle Scholar
  48. 48.
    Freese, A., Geller, A. I., and Neves, R. (1990) HSV-1 vector mediated neuronal gene delivery.Biochem. Pharmacol. 40, 2189–2199.PubMedCrossRefGoogle Scholar
  49. 49.
    Federoff, J. G., Geschwind, M. D., Geller, A. I., and Kessler, J. A. (1992) Expression of nerve growth factorin vivo from a defective herpes simplex virus I vector prevents effects of axotomy on sympathetic ganglia.Proc. Natl Acad. Sci. USA 89, 1636–1640.PubMedCrossRefGoogle Scholar
  50. 50.
    During, M. J., Freese, A., Wilcox, C., Deutch, A. Y., O'Malley, K., and Geller, A. I. (1992) Towards gene therapy for Parkinson's disease. Expression of tyrosine hydroxylase in striatal cells from a HSV-1 vector causes long-term behavioural recovery in the rat model of Parkinson's disease.Abstracts of the 17th Herpes virus workshop, Edinburgh, Scotland.Google Scholar
  51. 51.
    Chiocca, A. E., Choi, B. B., Cai, W., De Luca, N., Schaffer, P. A., Di Figlia, M., et al. (1990) Transfer and expression of the lac Z gene in rat brain neurons by herpes simplex virus mutants.New Biologist 2, 739–746.PubMedGoogle Scholar
  52. 52.
    Ho, D. Y. and Mocarski, E. S. (1989) Herpes simplex virus latent RNA (Lat) is not required for latent infection in the mouse.Proc. Natl. Acad. Sci. USA 86, 7596–7600.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • David S. Latchman
    • 1
  1. 1.Department of Molecular PathologyUniversity College London Medical SchoolLondonUK

Personalised recommendations