Il Nuovo Cimento A (1965-1970)

, Volume 66, Issue 2, pp 409–423 | Cite as

Lagrangian formulation of the Zachariasen model with a CDD pole

  • J. Lukierski
  • L. Turko


The generalization of Thirring's formulation of the Zachariasen model in the presence of a CDD pole is given. The local field operator, describing an interacting CDD particle, is introduced. It is shown that the CDD pole can be interpreted as a particle only if the mass renormalization in the Zachariasen model is finite.


Lagrangian Formulation Commutator Function Asymptotic Field Subtraction Point Particle Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Лагранжианная формулировка модели жахариазена с CDD-полюсом


Приводится обобщение формулировки Тирринга модели Захариазена в присутствии CDD-полюса. Вводится локальный оператор поля, описывающий взаимодействующую CDD-частицу. Показывается, что CDD-полюс может быть интерпретирован, как частица, только если перенормировка массы в модели Захариазена является конечной.


Si espone la generalizzazione della formulazione di Thirring del modello di Zachariasen in presenza di un polo CDD. Si introduce l'operatore di campo locale, che descrive una particella CDD interagente. Si dimostra che si può interpretare il polo CDD come una particella solo se la rinormalizzazione delle masse nel modello di Zachariasen è finita.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    L. Castillejo, R. H. Dalitz andF. Dyson:Phys. Rev.,101, 453 (1956).ADSCrossRefGoogle Scholar
  2. (2).
    F. E. Low:Phys. Rev.,97, 1392 (1955).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    See,e.g.,R. J. Eden, P. V. Landshoff, D. I. Olive andJ. C. Polkinghorne:The Analytic S-Matrix (Cambridge, 1966).Google Scholar
  4. (4).
    A. O. Barut andK. H. Ruei:Phys. Rev.,122, 1340 (1961).ADSMathSciNetCrossRefGoogle Scholar
  5. (5).
    W. Thirring:Phys. Rev.,126, 1209 (1962). See also,W. Thirring:Theoretical Physics, inTrieste Seminar, 1962 (Vienna, 1962).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    A. L. Licht:Ann. of Phys.,34, 161 (1965).ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    J. Lukierski:Nuovo Cimento,60 A, 353 (1969).ADSCrossRefGoogle Scholar
  8. (8).
    W. Karwowski, J. Lukierski andN. Sznajder:Nuovo Cimento,63 A, 509 (1969).ADSCrossRefGoogle Scholar
  9. (9).
    F. Zachariasen:Phys. Rev.,121, 1851 (1961).ADSMathSciNetCrossRefGoogle Scholar
  10. (10).
    G. F. Chew andS. Mandelstam:Phys. Rev.,119, 467 (1960).ADSMathSciNetCrossRefGoogle Scholar
  11. (11).
    J. Lukierski andL. Turko:Bull. Acad. Soc. Polon.,16, 905 (1968).Google Scholar
  12. (12).
    W. Karwowski andN. Sznajder:Acta Phys. Polon.,34, 1057 (1968).Google Scholar
  13. (14).
    For simplicity we shall assume thatn=1 in (3.1),M 1M andf 1f. The generalization to arbitrary finiten does not introduce any qualitative difficulties.Google Scholar
  14. (15).
    We recall that the CDD pole determines the position of the real zero of the scattering amplitude, and the CDD particle is described by a pole term, implied by the presence of such a zero.Google Scholar
  15. (16).
    J. D. Bjorken:Phys. Rev. Lett.,4, 473 (1960).ADSCrossRefGoogle Scholar
  16. (17).
    The best for the Lagrangian description is the inelasticN/D method of (3), where the input information about inelasticity is given by the ratio αeltot.ADSMathSciNetCrossRefGoogle Scholar
  17. (18).
    See,e.g.,J. B. Hartle andC. E. Jones:Phys. Rev.,140, B 90 (1965);D. Atkinson, K. Dietz andD. Morgan:Ann. of Phys.,37, 77 (1966).ADSMathSciNetCrossRefGoogle Scholar
  18. (19).
    T. D. Lee andG. C. Wick:Nucl. Phys., B9, 209 (1969).ADSMathSciNetCrossRefGoogle Scholar
  19. (20).
    T. D. Lee:Proceedings of the 1969 Topical Conference on Weak Interactions, CERN, January 1969, report CERN 69-7, p. 427.Google Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • J. Lukierski
    • 1
  • L. Turko
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.University of WrocŀawWrocŀawPoland

Personalised recommendations