Advertisement

Annali dell’Università di Ferrara

, Volume 48, Issue 1, pp 119–131 | Cite as

Projective version of Malcolmson’s criterion

  • Marianna Fornasiero
Article

Abstract

It is proven that the extension of Malcolmson’s methods to reppresent all elements ofR ζ is not purely straightforward. A detailed proof of such extension is here furnished.

Key words and phrases

R-rigns, (universal) ζ-inverting (Rζ, γ), finitely generated projectiveR-modules Mathematics Subject Classification (2001) 16590 

Sunto

Si prova che l’estensione dei metodi di Malcolmson per la rappresentazione degli elementi diR ζ a tutte le applicazioni tra moduli proiettivi indotti non è puramente meccanica. È fornita una dimostrazione dettagliata di detta estensione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. M. Cohn,On the embedding of rings in skew fields, Proc. London Math. Soc. (3),11 (1961), pp. 511–530.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    P. M. Cohn,Free rings and their relations, Accademic Press, London (1971).MATHGoogle Scholar
  3. [3]
    P. M. Cohn,Rings of fractions, Amer. Math. Monthly,78 (1971), pp. 596–615.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P. M. Cohn,Skew Fields of Fractions, and the Prime Spectrum of a Ring, Tulane University Ring and Operator Theory Year, Lecture notes in Mathematics, No246, Springer-Verlag, New York/Berlin (1972).Google Scholar
  5. [5]
    P. M. Cohn,Universal skew fields of fractions, Symposia Math.,VIII (1972), pp. 135–148.Google Scholar
  6. [6]
    P. M. Cohn,The class of rings embeddable in skew fields, Bull. London Math. Soc.,6 (1974), pp. 147–148.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Malcolmson,Construction of universal matrix localizations, L. N. M.,951 (1982), pp. 117–132.MathSciNetCrossRefGoogle Scholar
  8. [8]
    L. H. Rowen,Ring Theory, Vol. I, Accademic Press, London (1991).MATHGoogle Scholar
  9. [9]
    A. H. Schofield,Representation of rings over Skew Fields, London Math. Soc. Lecture Note Series,92 C. U. P. (1985).Google Scholar

Copyright information

© Università degli Studi di Ferrara 2002

Authors and Affiliations

  • Marianna Fornasiero
    • 1
  1. 1.Dipartimento di MatematicaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations