Skip to main content
Log in

Green fluorescent protein as an all-purpose reporter in Petunia

  • Commentary
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2001

Abstract

Two critical attributes of a reporter gene are ease of scoring for activity and capacity for expression in all cell types. We have examined a variant of the gene encoding green fluorescent protein,mgfp5, for its ability to meet these criteria in petunia. Under regulation of the Cauliflower Mosaic Virus (CaMV) 35S promoter, GFP was detectable in all vegetative and most floral cell types. Promoters from petuniaadhl andadh2 allowed for production of GFP in those few cell types lacking GFP production from the CaMV 35S promoter, verifying its capacity for expression in all cell types. With the appropriate promoter, GFP fluorescence was thus readily detectable throughout the plant. A potential complication is the green autofluorescence exhibited by some plant tissues. This auto-fluorescence is for the most part distinguishable from that contributed by GFP, but under-scores the need for appropriate controls in GFP-reporter-based experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assad-Garcia N, Ochoa-Alejo N, Garcia-Hernandez E, Herrera-Estella L and Simpson J (1992)Agrobacterium-mediated transformation of tomatillo (Physalis ixocarpa) and tissue-specific and developmental expression of the CaMV 35S promoter in transgenic tomatillo plants. Plant Cell Reports 11:558–562.

    Article  Google Scholar 

  • Benfey PN, Ren L and Chua N-H (1989) The CAMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8: 2195–2202.

    PubMed  CAS  Google Scholar 

  • Benfey PN and Chua NH (1990) The Cauliflower Mosaic Virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966.

    Article  PubMed  CAS  Google Scholar 

  • Dolferus R, De Bruxelles G, Dennis ES and Peacock WJ (1994) Regulation of theArabidopsis adh gene by anaerobic and other environmental stresses. Annals Bot 74: 301–308.

    Article  CAS  Google Scholar 

  • Flach J, Bossie M, Vogel J, Corbett A, Jinks T, Willins DA and Silver PA (1994) A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol Cell Biol 14:8399–8407.

    PubMed  CAS  Google Scholar 

  • Foster-Atkinson E (1996) Alcohol dehydrogenase gene expression in petunia. Ph.D. Dissertation, U of Guelph, Guelph, Ontario, Canada.

    Google Scholar 

  • Gerats AGM, Souver E, Kroon J, McLean M, Farcy E and Maizonnier D (1992)Petunia hybrida. In: O’Brien S (ed) Genetic Maps: Locus Maps of Complex Genomes, 6th edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Goverse A, Biesheuvel J, Wijers GJ, Gommers FJ, Bakker J, Schot A and Helder J (1998)In planta monitoring of the activity of two constitutive promoters, CaMV 35S and TR2, in the developing feeding cells induced byGlobodera rosticiensis using green fluorescent protein in combination with confocal laser scanning microscopy. Physiol Mol Path 52:375–284.

    Google Scholar 

  • Gregerson R, McLean M, Beld M, Gerats AGM and Strommer J (1991) Structure, expression, chromosomal location and product of the gene encoding ADH1 in Petunia. Plant Mol Biol 17:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J and Amos B (1995) GFP in plants. Trends Genet 11:328–329.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC and Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127.

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Prasher DC and Tsien RY (1994) Wavelength mutations and post-translational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504.

    Article  PubMed  CAS  Google Scholar 

  • Hu W and Cheng C (1995) Expression of Aequorea green fluorescent protein in plant cells. FEBS Letters 375:125–128.

    Article  Google Scholar 

  • Inouye S and Tsuji FI (1994) Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Letters 351:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff M, O’Dell M, Cluster PD and Flavell RB (1997) RNA-Mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88:845–854.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemiex C and Jorgenson RA (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.

    PubMed  CAS  Google Scholar 

  • Palm GJ and Wlodower A (1999) Spectral variants of green fluorescent protein. Methods Enzymol 302:378–393.

    Article  PubMed  CAS  Google Scholar 

  • Que Q, Wang H, English JJ and Jorgensen RA (1997) The frequency and degree of co-suppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9:1357–1368.

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Santa Cruz S, Chapman S, Roberts AG, Roberts IM and Prior DAM (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA 93:6286–6290.

    Article  CAS  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, and Galbraith DW (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784.

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Moller SG, Blumsom JK and Atkinson H (1999) Continual green fluorescent protein monitoring of promoter activity in plants. Methods Enzymol 302:316–328.

    Article  PubMed  CAS  Google Scholar 

  • Wang S and Hazelrigg T (1994) Implications forbcd mRNA from spatial distribution ofexu protein in Drosophila oogenesis. Nature 369:400–403.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JE, Twell D and Lindsey K (1997) Activities of the CaMV 35S and nos promoters in pollen: Implications for field release of transgenic plants. J Exp Bot 48:265–275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Strommer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02824084.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garabagi, F., Strommer, J. Green fluorescent protein as an all-purpose reporter in Petunia. Plant Mol Biol Rep 18, 219–226 (2000). https://doi.org/10.1007/BF02823992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823992

Key words

Navigation