Skip to main content
Log in

The influence of dynamic properties of ground soil on vibration characteristics of rigid body on sand ground

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This study aims to investigate the influence of dynamic properties of the ground soil on vibration properties of a rigid body placed on the sand ground surface to clarify the vibration behavior of a structure in terms of the interaction between the structure and the ground. A series of cyclic triaxial tests and three types of model vibration tests were performed. The dynamic properties of ground soil were clarified using cyclic triaxial tests. It was found that the equivalent shear modulus markedly depends on confining pressure and relative density, and that the hysteresis-damping ratio also depends on confining stress but not upon relative density. In model vibration tests, rigid body models with variable masses, inertial moment, base size and base shape were prepared and their vibration behaviors were observed. Vibration characteristics were estimated from the observed behavior, and the period and damping ratio were examined. It was found that the period depends on not only the mechanical properties of the rigid body and the relative density of ground, but also upon the magnitude of the vibration amplitude. A simple model of a spring and a dashpot was used to correlate period and damping ratio of ground soil in a model vibration test with equivalent shear modulus and hysteresis damping ratio by cyclic triaxial testing. The relationship between normalized inverse squares of the period and rotation amplitude was similar to the relationship between the normalized equivalent shear modulus and the shear strain amplitude. Normalized damping ratio also showed good agreement with the normalized hysteresis-damping ratio. The calculated equivalent shear modulus from the simple model linearly increased with increased average contact pressure, as the equivalent shear modulus of the cyclic triaxial test 1 inearly increased with effective confining pressure on a log-log scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crouse, C.H., Behnam, H., Emrique, L.J., and Wong, H.L. (1990). “Foundation impedance functions; theory versus experiment.”Journal of Geotechnical Engineering Division, ASCE, Vol. 16, No. 3, pp. 432–449.

    Google Scholar 

  • Gazetas, G. and Stokoe, K.H. (1991). “Free vibration of embedded foundation: theory versus experiment.”Journal of Geotechnical Engineering Division, ASCE, Vol. 117, No. 9, pp. 1382–1401.

    Google Scholar 

  • Hardin, B.O. and Richart, F.E. (1963). “Elastic wave velocities in granular soils.”Journal of Soil Mechanics and Foundations, ASCE, Vol. 89, No. SM 1, pp. 33–65.

    Google Scholar 

  • Kim, Y.S., Miura, K., Miura, S. and Nishimura, M. (2001). “Vibration characteristics of rigid body on sand ground.”Journal of Soil Dynamics and Earthquake Engineering, Vol. 21, No. 1, pp. 19–37.

    Article  Google Scholar 

  • Kokusho, T. (1980). “Cyclic triaxial test of dynamic soil properties for wide strain range.”Soil and Foundations, Vol. 20, pp. 45–60.

    Google Scholar 

  • Miura, S. and Toki, S. (1982). “A sample preparation method and its effect on static and cyclic deformation-strength properties of sand.”Soils and Foundations, Vol. 22, No. 1, pp. 61–77.

    Google Scholar 

  • Nelson, E.F. and William, J.H. (1967). “Footing vibration with nonlinear subgrade support.”Journal of Geotechnical Engineering Division, ASCE, Vol. 93, No. SM5, pp. 191–211.

    Google Scholar 

  • Novak, M. (1970). “Prediction of footing vibration.”Journal of Geotechnical Engineering Division, ASCE, Vol. 96, No. 3, pp. 837–861.

    MathSciNet  Google Scholar 

  • Sreekantah, H.R. (1982). “Rocking vibration of footings.”Journal of Geotechnical Engineering Division, ASCE, Vol. 108, No. GT7, pp. 905–917.

    Google Scholar 

  • Stokoe, K.H. and Richart, F.E. (1974). “Dynamic response of embedded machine foundation.”Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No. 4, pp. 427–447.

    Google Scholar 

  • Tatsuoka, F. and Iwasaki, T. (1978). “Hysteretic damping of sands under cyclic loading and its relation to shear modulus.”Soils and Foundations, Vol. 18, pp. 25–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Gyun Ha Ph.D. Candidale or Choong-Ki Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YS., Ha, TG., Choi, JJ. et al. The influence of dynamic properties of ground soil on vibration characteristics of rigid body on sand ground. KSCE J Civ Eng 11, 81–91 (2007). https://doi.org/10.1007/BF02823851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823851

Keywords

Navigation