, Volume 26, Issue 2, pp 563–573 | Cite as

Response of juvenile fish assemblages in tidal salt marsh creeks treated forPhragmites removal



We examined fish assemblages in tidal salt marsh creeks in Delaware Bay in order to evaluate their response to treatment forPhragmites removal following initial treatment in 1996. In Alloway Crrek, a tributary to Delaware Bay, reference creeks draining marsh of untreatedPhragmites or naturally occurringSpartina were compared with creeks in marshes treated forPhragmites removal. These reference and treated creeks occur in close proximity and share many characteristics including salinity, temperature, dissolved oxygen, and turbidity, although creeks inPhragmites sites differed slightly in bathymetry. We analyzed a time series of otter trawl collections (22 monthly sample periods from 1999 to 2001) for differences in juvenile fish assemblage among creeks with different vegetation history. Periodically, young-of-the-year (YOY) and age 1+ white perch (Morone americana), YOY spot (Leiostomus xanthurus), YOY Atlantic menhaden (Brevoortia tyrannus), and other species were relatively more abundant atPhragmites sites, but other dominant species were preiodically abundant at all sites. Among-treatment differences based on principal response curves analysis accounted for about 19% of the total species variation, but differences varied widely among sample periods and there is little or no indication of a trend over the 3-yr period. Larger collections were often associated with subtidal structure, which was more common atPhragmites sites and potentially represents a sampling artifact. Assemblages of creeks with differing vegetation history differ weakly but recognizably, suggesting slow or little response to treatment, at least based on otter trawl collections in subtidal marsh creeks.


Salt Marsh Fish Assemblage Striped Bass Marsh Surface White Perch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.Google Scholar
  2. Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fish and decapods crustaceans.Estuaries 23:633–646.CrossRefGoogle Scholar
  3. Able, K. W. andS. M. Hagan. 2003. Impact of common reed,Phragmites australis on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50CrossRefGoogle Scholar
  4. Able, K. W., S. M. Hagan, andS. A. Brown. 2003. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal.Estuaries 26:484–493.CrossRefGoogle Scholar
  5. Able, K. W., K. L. Heck, Jr.,M. P. Fahay, andC. T. Roman. 1988. Use of salt-marsh peat reefs by small juvenile lobsters on Cape Cod, Massachusetts.Estuaries 11:83–86.CrossRefGoogle Scholar
  6. Able, K. W., P. Light, D. Nemerson, andR. Bush. 2001. Spatial variation in Delaware Bay (U.S.A.) marsh creek fish assemblages.Estuaries 24:441–452.CrossRefGoogle Scholar
  7. Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.CrossRefGoogle Scholar
  8. Beck, M. W., K. L. Heck, Jr.,K. W. Able, D. L. Childers, D. B. Eggleston, B.M. Gillanders, B. J. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, andM. P. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.BioScience 51:633–641.CrossRefGoogle Scholar
  9. Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208CrossRefGoogle Scholar
  10. Bray, J. R. andJ. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs 27:325–349.CrossRefGoogle Scholar
  11. Bulger, A. J., B. C. Hayden, M. E. Monaco, D. M. Nelson, andM. G. McCormick-Ray. 1993. Biologically-based estuarine salinity zones derived from a multivariate analysis.Estuaries 16: 311–322.CrossRefGoogle Scholar
  12. Chambers, R. M. 1997. Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh.Wetlands 17:360–367.Google Scholar
  13. Chambers, R. M., L. A. Meyerson, andK. Saltonstall 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.CrossRefGoogle Scholar
  14. Cowan, Jr.,J. H. andR. S. Birdsong. 1985. Seasonal occurrence of larval and juvenile fishes in a Virginia Atlantic Coast estuary with emphasis on drums (Family Sciaenidae).Estuaries 8: 48–59.CrossRefGoogle Scholar
  15. Currin, C. A., S. Y. Newell, andH. W. Paerl. 1995. The role of standing deadSpartina allerniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis.Marine Ecology Progress Series 121:99–116.CrossRefGoogle Scholar
  16. Grothues, T. M. andK. W. Able. 2003. Discerning vegetation and environmental correlates with subtidal marsh fish asemblage dynamics duringPhragmites eradication efforts: Interannual trend measures.Estuaries 26:574–586.CrossRefGoogle Scholar
  17. Hodson, R. G., J. O. Hackman, andC. R. Bennet. 1981. Food habits of young spots in nursery areas of the Cape Fear River estuary, North Carolina.Transactions of the American Fisheries Society 110:495–501.CrossRefGoogle Scholar
  18. Jongman, R. G. H., C. J. F. ter Braak, andO. F. R. van Tongeren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, New York.Google Scholar
  19. Kneib, R. T. 1997. The role of tidal salt marshes in the ecology of estuarine nekton, p. 163–220.In A. D. Ansell, R. N. Gibson, and M. Barnes (eds.), Oceanography and Marine Biology: An Annual Review. UCL Press, London, U.K.Google Scholar
  20. Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:287–234.Google Scholar
  21. McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69: 1341–1351.CrossRefGoogle Scholar
  22. Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.CrossRefGoogle Scholar
  23. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.CrossRefGoogle Scholar
  24. Niering, W. A. andR. S. Warren. 1977. Salt marshes, p. 697–702.In J. Clark (ed.), Coastal Ecosystem Management: A Technical Manual for the Conservation of Coastal Zone Resources. John Wiley and Sons, New York.Google Scholar
  25. Olney, J. E., C. G. Grant, F. E. Schultz, C. L. Cooper, andJ. Hageman. 1983. Pterygiophore-interdigitation patterns in larvae of fourMorone species.Transactions of the American Fisheries Society 112:525–531.CrossRefGoogle Scholar
  26. Orson, R. A. 2000. A paleological assessment ofPhragmites australis in New England tidal marshes: Changes in plant community structure during the last few millennia.Biological Invasions 1:149–158.CrossRefGoogle Scholar
  27. Paller, M. H. 1994. Relationship between fish assemblage structure and stream order in South Carolina coastal plain streams.Transactions of the Amereican Fisheries Society 123:150–161.CrossRefGoogle Scholar
  28. Pestrong, R. 1969. The shear strength of tidal marsh sediments.Journal of Sedimentary Petrology 39:322–326.Google Scholar
  29. Rooth, J. E. andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.Google Scholar
  30. Rountree, R. A. andK. W. Able. 1992. Foraging habits, growth, and temporal patterns of salt-marsh creek habitat use by young-of-the-year summer flounder in New Jersey.Transactions of the American Fisheries Society 12:765–776.CrossRefGoogle Scholar
  31. Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creek banks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.CrossRefGoogle Scholar
  32. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences of the United States of America 99:2445–2449.CrossRefGoogle Scholar
  33. Smith, D. G. 1976. Effect of vegetation on lateral migration of anastamosed channels of a glacier meltwater river.Geological Society of America Bulletin 87:857–860.CrossRefGoogle Scholar
  34. Smith, S. M., J. G. Hoff, Jr.,S. P. O'Neil, andM. P. Weinstein. 1984. Community and trophic organization of nekton utilizing shallow marsh habitats, York River estuary, Virginia.Fishery Bulletin 82:455–467.Google Scholar
  35. ter Braak, C. J. F. andP. Smilauer. 1998. CANOCO for Windows: Software for Canonical Community Ordination, Version 4. Microcomputer Power, Ithaca, New York.Google Scholar
  36. Van den Brink, P. J. andC. J. F. ter Braak. 1998a. Principal response curves: Analysis of time dependent multivariate responses of a biological community to stress.Environmental Toxicology and Chemistry 18:138–148.CrossRefGoogle Scholar
  37. Van den Brink, P. J. andC. J. F. ter Braak. 1998b. Multivariate analysis of stress in ecosystems by principal response curves and similarity analysis.Aquatic Ecology 32:163–178.CrossRefGoogle Scholar
  38. Verdonschot, P. F. M. andC. J. F. ter Braak. 1994. An experimental manipulation of oligochaete communities in mesocosms treated with chlopyrifos or nutrient additions: Multivariate analyses with Monte Carlo permutation tests.Hydrobiolgia 278:251–266.CrossRefGoogle Scholar
  39. Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic macroalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.CrossRefGoogle Scholar
  40. Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24: 90–107.CrossRefGoogle Scholar
  41. Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reedPhragmites australis affect essential fish habitat?Estuaries 22:63–72.CrossRefGoogle Scholar
  42. Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and management of a large-scale wetland restoration project.Wetlands Ecology Management 4:111–127.CrossRefGoogle Scholar
  43. Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.CrossRefGoogle Scholar
  44. Williams, G. D. andJ. B. Zedler. 1999. fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel geomorphology and restoration history.Estuaries 22:702–716.CrossRefGoogle Scholar
  45. Windham, L. andR. G. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.CrossRefGoogle Scholar
  46. Windham, L. andL. Meyerson. 2003. Impacts of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S.Estuaries 26:451–463.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  1. 1.Marine Field Station, institute of Marine and Coastal SciencesRutgers UniversityTuckerton

Personalised recommendations