Skip to main content
Log in

Response of juvenile fish assemblages in tidal salt marsh creeks treated forPhragmites removal

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

We examined fish assemblages in tidal salt marsh creeks in Delaware Bay in order to evaluate their response to treatment forPhragmites removal following initial treatment in 1996. In Alloway Crrek, a tributary to Delaware Bay, reference creeks draining marsh of untreatedPhragmites or naturally occurringSpartina were compared with creeks in marshes treated forPhragmites removal. These reference and treated creeks occur in close proximity and share many characteristics including salinity, temperature, dissolved oxygen, and turbidity, although creeks inPhragmites sites differed slightly in bathymetry. We analyzed a time series of otter trawl collections (22 monthly sample periods from 1999 to 2001) for differences in juvenile fish assemblage among creeks with different vegetation history. Periodically, young-of-the-year (YOY) and age 1+ white perch (Morone americana), YOY spot (Leiostomus xanthurus), YOY Atlantic menhaden (Brevoortia tyrannus), and other species were relatively more abundant atPhragmites sites, but other dominant species were preiodically abundant at all sites. Among-treatment differences based on principal response curves analysis accounted for about 19% of the total species variation, but differences varied widely among sample periods and there is little or no indication of a trend over the 3-yr period. Larger collections were often associated with subtidal structure, which was more common atPhragmites sites and potentially represents a sampling artifact. Assemblages of creeks with differing vegetation history differ weakly but recognizably, suggesting slow or little response to treatment, at least based on otter trawl collections in subtidal marsh creeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Able, K. W. andM. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  • Able, K. W. andS. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: Response of fish and decapods crustaceans.Estuaries 23:633–646.

    Article  Google Scholar 

  • Able, K. W. andS. M. Hagan. 2003. Impact of common reed,Phragmites australis on essential fish habitat: Influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus).Estuaries 26:40–50

    Article  Google Scholar 

  • Able, K. W., S. M. Hagan, andS. A. Brown. 2003. Mechanisms of marsh habitat alteration due toPhragmites: Response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment forPhragmites removal.Estuaries 26:484–493.

    Article  Google Scholar 

  • Able, K. W., K. L. Heck, Jr.,M. P. Fahay, andC. T. Roman. 1988. Use of salt-marsh peat reefs by small juvenile lobsters on Cape Cod, Massachusetts.Estuaries 11:83–86.

    Article  Google Scholar 

  • Able, K. W., P. Light, D. Nemerson, andR. Bush. 2001. Spatial variation in Delaware Bay (U.S.A.) marsh creek fish assemblages.Estuaries 24:441–452.

    Article  Google Scholar 

  • Angradi, T. R., S. M. Hagan, andK. W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh:Phragmites vs.Spartina.Wetlands 21:75–92.

    Article  Google Scholar 

  • Beck, M. W., K. L. Heck, Jr.,K. W. Able, D. L. Childers, D. B. Eggleston, B.M. Gillanders, B. J. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, andM. P. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.BioScience 51:633–641.

    Article  Google Scholar 

  • Benoit, L. K. andR. A. Askins. 1999. Impact of the spread ofPhragmites on the distribution of birds in Connecticut tidal marshes.Wetlands 19:194–208

    Article  Google Scholar 

  • Bray, J. R. andJ. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs 27:325–349.

    Article  Google Scholar 

  • Bulger, A. J., B. C. Hayden, M. E. Monaco, D. M. Nelson, andM. G. McCormick-Ray. 1993. Biologically-based estuarine salinity zones derived from a multivariate analysis.Estuaries 16: 311–322.

    Article  Google Scholar 

  • Chambers, R. M. 1997. Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh.Wetlands 17:360–367.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Cowan, Jr.,J. H. andR. S. Birdsong. 1985. Seasonal occurrence of larval and juvenile fishes in a Virginia Atlantic Coast estuary with emphasis on drums (Family Sciaenidae).Estuaries 8: 48–59.

    Article  Google Scholar 

  • Currin, C. A., S. Y. Newell, andH. W. Paerl. 1995. The role of standing deadSpartina allerniflora and benthic microalgae in salt marsh food webs: Considerations based on multiple stable isotope analysis.Marine Ecology Progress Series 121:99–116.

    Article  Google Scholar 

  • Grothues, T. M. andK. W. Able. 2003. Discerning vegetation and environmental correlates with subtidal marsh fish asemblage dynamics duringPhragmites eradication efforts: Interannual trend measures.Estuaries 26:574–586.

    Article  Google Scholar 

  • Hodson, R. G., J. O. Hackman, andC. R. Bennet. 1981. Food habits of young spots in nursery areas of the Cape Fear River estuary, North Carolina.Transactions of the American Fisheries Society 110:495–501.

    Article  Google Scholar 

  • Jongman, R. G. H., C. J. F. ter Braak, andO. F. R. van Tongeren. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, New York.

    Google Scholar 

  • Kneib, R. T. 1997. The role of tidal salt marshes in the ecology of estuarine nekton, p. 163–220.In A. D. Ansell, R. N. Gibson, and M. Barnes (eds.), Oceanography and Marine Biology: An Annual Review. UCL Press, London, U.K.

    Google Scholar 

  • Marks, M., B. Lapin, andJ. Randall. 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:287–234.

    Google Scholar 

  • McIvor, C. C. andW. E. Odum. 1988. Food, predation risk, and microhabitat selection in a marsh fish assemblage.Ecology 69: 1341–1351.

    Article  Google Scholar 

  • Meyer, D. L., J. M. Johnson, andJ. W. Gill. 2001. Comparison of nekton use ofPhragmites australis andSpartina alterniflora marshes in the Chesapeake Bay, USA.Marine Ecology Progress Series 209:71–84.

    Article  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Niering, W. A. andR. S. Warren. 1977. Salt marshes, p. 697–702.In J. Clark (ed.), Coastal Ecosystem Management: A Technical Manual for the Conservation of Coastal Zone Resources. John Wiley and Sons, New York.

    Google Scholar 

  • Olney, J. E., C. G. Grant, F. E. Schultz, C. L. Cooper, andJ. Hageman. 1983. Pterygiophore-interdigitation patterns in larvae of fourMorone species.Transactions of the American Fisheries Society 112:525–531.

    Article  Google Scholar 

  • Orson, R. A. 2000. A paleological assessment ofPhragmites australis in New England tidal marshes: Changes in plant community structure during the last few millennia.Biological Invasions 1:149–158.

    Article  Google Scholar 

  • Paller, M. H. 1994. Relationship between fish assemblage structure and stream order in South Carolina coastal plain streams.Transactions of the Amereican Fisheries Society 123:150–161.

    Article  Google Scholar 

  • Pestrong, R. 1969. The shear strength of tidal marsh sediments.Journal of Sedimentary Petrology 39:322–326.

    Google Scholar 

  • Rooth, J. E. andL. Windham. 2000.Phragmites on death row: Is biocontrol really warranted?Wetland Journal 12:29–37.

    Google Scholar 

  • Rountree, R. A. andK. W. Able. 1992. Foraging habits, growth, and temporal patterns of salt-marsh creek habitat use by young-of-the-year summer flounder in New Jersey.Transactions of the American Fisheries Society 12:765–776.

    Article  Google Scholar 

  • Rozas, L. P., C. C. McIvor, andW. E. Odum. 1988. Intertidal rivulets and creek banks: Corridors between tidal creeks and marshes.Marine Ecology Progress Series 47:303–307.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences of the United States of America 99:2445–2449.

    Article  CAS  Google Scholar 

  • Smith, D. G. 1976. Effect of vegetation on lateral migration of anastamosed channels of a glacier meltwater river.Geological Society of America Bulletin 87:857–860.

    Article  Google Scholar 

  • Smith, S. M., J. G. Hoff, Jr.,S. P. O'Neil, andM. P. Weinstein. 1984. Community and trophic organization of nekton utilizing shallow marsh habitats, York River estuary, Virginia.Fishery Bulletin 82:455–467.

    Google Scholar 

  • ter Braak, C. J. F. andP. Smilauer. 1998. CANOCO for Windows: Software for Canonical Community Ordination, Version 4. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Van den Brink, P. J. andC. J. F. ter Braak. 1998a. Principal response curves: Analysis of time dependent multivariate responses of a biological community to stress.Environmental Toxicology and Chemistry 18:138–148.

    Article  Google Scholar 

  • Van den Brink, P. J. andC. J. F. ter Braak. 1998b. Multivariate analysis of stress in ecosystems by principal response curves and similarity analysis.Aquatic Ecology 32:163–178.

    Article  Google Scholar 

  • Verdonschot, P. F. M. andC. J. F. ter Braak. 1994. An experimental manipulation of oligochaete communities in mesocosms treated with chlopyrifos or nutrient additions: Multivariate analyses with Monte Carlo permutation tests.Hydrobiolgia 278:251–266.

    Article  Google Scholar 

  • Wainright, S. C., M. P. Weinstein, K. W. Able, andC. A. Currin. 2000. Relative importance of benthic macroalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs.Marine Ecology Progress Series 200:77–91.

    Article  CAS  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24: 90–107.

    Article  Google Scholar 

  • Weinstein, M. P. andJ. H. Balletto. 1999. Does the common reedPhragmites australis affect essential fish habitat?Estuaries 22:63–72.

    Article  Google Scholar 

  • Weinstein, M. P., J. H. Balletto, J. M. Teal, andD. F. Ludwig. 1997. Success criteria and management of a large-scale wetland restoration project.Wetlands Ecology Management 4:111–127.

    Article  Google Scholar 

  • Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, andS. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: A stable isotope approach.Transactions of the American Fisheries Society 129:797–810.

    Article  Google Scholar 

  • Williams, G. D. andJ. B. Zedler. 1999. fish assemblage composition in constructed and natural tidal marshes of San Diego Bay: Relative influence of channel geomorphology and restoration history.Estuaries 22:702–716.

    Article  Google Scholar 

  • Windham, L. andR. G. Lathrop. 1999. Effects ofPhragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey.Estuaries 22:927–935.

    Article  Google Scholar 

  • Windham, L. andL. Meyerson. 2003. Impacts of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S.Estuaries 26:451–463.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Grothues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grothues, T.M., Able, K.W. Response of juvenile fish assemblages in tidal salt marsh creeks treated forPhragmites removal. Estuaries 26, 563–573 (2003). https://doi.org/10.1007/BF02823731

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823731

Keywords

Navigation