, Volume 26, Issue 2, pp 444–451 | Cite as

Genetic variation among North American populations ofPhragmites australis: Implications for management

  • Kristin Saltonstall


Over the past century, the distribution and abundance ofPhragmites australis (common reed) has dramatically increased in both freshwater and brackish wetlands throughout North America. It has been hypothesized that the increased competitive ability ofPhragmites could be the result of an introduction of a more aggressive genotype. Sequence data from 2 noncoding regions of the chloroplast genome show that, historically, 11 native haplotypes were found across North America and population-structuring distinguishing samples from the Atlantic Coast, Midwest, West, and Gulf Coast regions of the continent was evident. Today a single genetically-distinct haplotype dominates the Atlantic Coast and is also found across the continent in lower frequencies; this type is common in Europe and Asia and has most likely been introduced to North America. Comparisons of modern populations with historic samples show that along the Atlantic Coast, this cosmopolitan type has replaced native haplotypes and it is invading new sites throughout the rest of the country. In the Midwest and West, native populations are still common but introduced populations are found along roadsides throughout the area. Gulf Coast populations are dominated by another population type that is genetically distinct from all other North American population types.


North America Atlantic Coast Gulf Coast Tidal Marsh Modern Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences U.S.A. 99: 1395–1398.CrossRefGoogle Scholar
  2. Castelloe, J., andA. R. Templeton. 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory.Molecular Phylogenetics and Evolution 3:102–113.CrossRefGoogle Scholar
  3. Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.CrossRefGoogle Scholar
  4. Clement, M., D. Posada, andK. A. Crandall. 2000. TCS: A computer program to estimate gene genealogies.Molecular Ecology 9:1657–1660.CrossRefGoogle Scholar
  5. Clevering, O. A., andJ. Lissner. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics ofPhragmites australis.Aquatic Botany 64:185–208.CrossRefGoogle Scholar
  6. Djebrouni, M.. 1992. Variabilité morphologique, caryologique et enzymatique chez quelques populations dePhragmites australis (Cav.) Trin. ex Steud.Folia Geobotanica et Phytotaxonomica 27: 49–59.Google Scholar
  7. Doyle, J. J., andE. E. Dickson. 1987. Preservation of plant samples for DNA restriction endonuclease analysis.Taxon 36:715–722.CrossRefGoogle Scholar
  8. Dumolin-Lapeque, S., B. Demesure, S. Fineschi, V. L. Corre, andR. J. Petit. 1997. Phylogeographic structure of white oaks throughout the European continent.Genetics 146:1475–1487.Google Scholar
  9. Fournier, W., D. P. Hauber, andD. A. White. 1995. Evidence of infrequent sexual propagation ofPhragmites australis throughout the Mississippi River delta.American Journal of Botany 82:71.Google Scholar
  10. Goman, M., andL. Wells. 2000. Trends in river flow affecting the northeastern reach of the San Francisco Bay estuary over the past 7,000 years.Quaternary Research 54:206–217.CrossRefGoogle Scholar
  11. Hamilton, M. B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation.Molecular Ecology 8:513–525.CrossRefGoogle Scholar
  12. Hansen, R. M. 1978. Shasta ground sloth food habits, Rampart Cave, Arizona.Paleobiology 4:302–319.Google Scholar
  13. Hauber, D. P., D. A. White, S. P. Powers, andF. R. De-Francesch. 1991. Isozyme variation and correspondence with unusual infrared reflectance patterns inPhragmites australis (Poaceae).Plant Systematics and Evolution 178:1–8.CrossRefGoogle Scholar
  14. Keller, B. E. M. 2000. Genetic variation among and within populations ofPhragmites australis in the Charles River watershed.Aquatic Botany 66:195–208.CrossRefGoogle Scholar
  15. Koppitz, H. 1999. Analysis of genetic diversity among selected populations ofPhragmites australis worldwide.Aquatic Botany 64:209–221.CrossRefGoogle Scholar
  16. Koppitz, H., H. Kuehl, K. Hesse, andJ. G. Kohl. 1997. Some aspects of the importance of genetic diversity inPhragmites australis (Cav.) Trin. ex Steudel for the development of reed stands.Botanica Acta 110:217–223.Google Scholar
  17. Lynch, E. A., andK. Saltonstall. 2002. Paleoecological and genetic analyses provide evidence for recent expansion of nativePhragmites australis populations in a Lake Superior wetland.Wetlands, 22:637–646.CrossRefGoogle Scholar
  18. Marks, M., B. Lapin, andJ. Randall 1994.Phragmites australis (P. communis): Threats, management, and monitoring.Natural Areas Journal 14:285–294.Google Scholar
  19. McCauley, D. E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants.Trends in Ecology and Evolution 10:198–202.CrossRefGoogle Scholar
  20. Meyerson, L. A., K. Saltonstall, L. M. Windham, E. Kiviat, andS. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America.Wetlands Ecology and Management 8:89–103.CrossRefGoogle Scholar
  21. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  22. Niering, W. A., R. S. Warren, andC. G. Weymouth. 1977. Our dynamic tidal marshes: Vegetation changes as revealed by peat analysis.Connecticut Arboretum Bulletin 12:22.Google Scholar
  23. Ohsako, T., andO. Ohnishi. 2000. Intra- and interspecific phylogeny of wildFagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA.American Journal of Botany 87:573–582.CrossRefGoogle Scholar
  24. Orson, R. 1999. A paleoecological assessment ofPhragmites australis in New England tidal marshes: Changes in plant community structure during the last millennium.Biological Invasions 1:149–158.CrossRefGoogle Scholar
  25. Pellegrin, D., andD. P. Hauber. 1999. Isozyme variation among populations of the clonal species,Phragmites australis (Cav.) Trin. ex Steudel.Aquatic Botany 63:241–259.CrossRefGoogle Scholar
  26. Powell, W., M. Morgante, C. Andre, J. W. McNicol, G. C. Machray, J. J. Doyle, S. V. Tingey, andJ. A. Rafalski. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome.Current Biology 5:1023–1029.CrossRefGoogle Scholar
  27. Raymond, M., andF. Rousset. 1995. An exact test for population differentiation.Evolution 49:1280–1283.CrossRefGoogle Scholar
  28. Roman, C. T., W. A. Niering, andR. S. Warren. 1984. Salt marsh vegetation changes in response to tidal restrictions.Environmental Management 8:141–150.CrossRefGoogle Scholar
  29. Saltonstall, K. 2001. A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses.Molecular Ecology Notes 1:76–78.CrossRefGoogle Scholar
  30. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America.Proceedings of the National Academy of Sciences U.S.A. 99:2445–2449.CrossRefGoogle Scholar
  31. Schneider, S., D. Roessli, andL. Excoffier. 2000. Arlequin version 2.000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland.Google Scholar
  32. Soltis, D. E., M. A. Gitzendanner, D. D. Strenge, andP. S. Soltis. 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America.Plant Systematics and Evolution 206:353–373.CrossRefGoogle Scholar
  33. Stalter, R. 1975.Phragmites communis in South Carolina.Rhodora 77:159.Google Scholar
  34. Taberlet, P., L. Gielly, G. Pautou, andJ. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA.Plant Molecular Biology 17:1105–1109.CrossRefGoogle Scholar
  35. Templeton, A. R., K. A. Crandall, andC. F. Sing. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonucleases mapping and DNA sequence data. III. Cladogram estimation.Genetics 132:619–633.Google Scholar
  36. Zeidler, A., S. Schneider, C. Jung, A. E. Melchinger, andP. Dittrich. 1994. The use of DNA fingerprinting in ecological studies ofPhragmites australis (Cav.) Trin. ex Steudel.Botanica Acta 107:237–242.Google Scholar

Sources of Unpublished Materials

  1. Eggers, S. Personal Communication. U.S. Army Corps of Engineers, 190 5th Street East, St. Paul, Minnesota 55101-1638.Google Scholar
  2. Hauber, D. Personal Communication. Department of Biological Sciences, Box 27, Loyola University, New Orleans, Louisiana 70118.Google Scholar
  3. U.S. Department of Agriculture. 2002. Invaders Database System. =Noxious_map&Plant_Name=Phragmites+australis&submitl =Submit&Choice=1&CMD=Map.Google Scholar
  4. Yuma Park Service Ranger. Personal Communication. Yuma Crossing National Heritage Area, 180 West First Street, Yuma, Arizon 85364.Google Scholar

Copyright information

© Estuarine Research Federation 2003

Authors and Affiliations

  • Kristin Saltonstall
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyYale UniversityNew Haven

Personalised recommendations