Bulletin of Materials Science

, Volume 14, Issue 6, pp 1331–1341 | Cite as

Grain boundary effect on the electrical properties of boron-doped polysilicon films

  • N K Upreti
  • S Singh


The effect of grain boundary width has been accounted for and a modified simple model of average carrier concentration is presented considering the transport mechanism of charge carriers by thermionic emission only. It is found that the electrical properties of polysilicon are very sensitive to doping concentration when the grain size is small and the effect of grain boundary width on electrical properties increases as the grain size decreases. The inclusion of grain boundary width in resistivity and mobility formulae also gives better results near the critical doping concentration. The proposed model gives better agreement between experimental data and theoretical results.


Grain boundary electrical properties polysilicon films thermionic emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abo-Namous S A 1987Phys. Status Solidi A102 703Google Scholar
  2. Choudhary P R and Hover P L 1983J. Electrochem. Soc. 120 1761CrossRefGoogle Scholar
  3. Cowher M E and Sedwich T O 1972J. Electrochem. Soc. 119 1565CrossRefGoogle Scholar
  4. Fripp A L and Slack L H 1973J. Electrochem. Soc. 120 145CrossRefGoogle Scholar
  5. Henry C H, Logan R A and Merrit F R 1978J. Appl. Phys. 49 3530CrossRefGoogle Scholar
  6. Kamins T I 1971J. Appl. Phys. 42 4357CrossRefGoogle Scholar
  7. Lu N C C, Gerzberg L and Meindl J D 1980IEEE Trans. Electron Device Lett. 1 38CrossRefGoogle Scholar
  8. Lu N C C, Gerzberg L, Lu C Y and Meindl J D 1981aIEEE Trans. Electron Device Lett. 2 95CrossRefGoogle Scholar
  9. Lu N C C, Gerzberg L, Lu C Y and Meindl J D 1981bIEEE Trans. Electron Devices 28 818CrossRefGoogle Scholar
  10. Lu N C C, Gerzberg L, Lu C Y and Meindl J D 1983IEEE Trans. Electron Devices 30 137CrossRefGoogle Scholar
  11. Mandurah M M, Saraswat K C and Kamins T I 1981IEEE Trans. Electron Devices 28 1163, 1171CrossRefGoogle Scholar
  12. Muller R S and Kamins T I 1977 inDevices electronics for integrated circuits (New York: Wiley) Chap. 1Google Scholar
  13. Murota J and Sawai T 1982J. Appl. Phys. 53 3702CrossRefGoogle Scholar
  14. Pantalides S T, Selloni A and Car R 1985Solid State Electron. 28 17CrossRefGoogle Scholar
  15. Samaj L 1987Phys. Status Solidi A100 157Google Scholar
  16. Seto J Y W 1975J. Appl. Phys. 46 5247CrossRefGoogle Scholar
  17. Sze S M 1981 inPhysics of semiconductor devices 2nd Ed (New York: Wiley) Chap. 1, 4, 8Google Scholar
  18. Upreti N K and Singh S 1987Proc. Solid State Phys. Symp. BARC, Bombay p. 423Google Scholar
  19. Wolf H F 1969 inSilicon semiconductor data (Oxford: Pergamon) Ch. 2Google Scholar

Copyright information

© The Indian Academy of Sciences 1991

Authors and Affiliations

  • N K Upreti
    • 1
  • S Singh
    • 1
  1. 1.Department of PhysicsG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations