In Vitro - Plant

, Volume 32, Issue 2, pp 91–99 | Cite as

Stable genetic transformation ofPicea mariana (black spruce) via particle bombardment

  • Pierre J. Charest
  • Yvonne Devantier
  • Denis Lachance
Genetic Transformation/Somatic Cell Genetics


Stable genetic transformation ofPicea mariana (black spruce) was obtained via particle bombardment into two target tissues, mature cotyledonary somatic embryos and suspensions from embryonal masses, with the Biolistic PDS-1000/He device. Seven transgenic embryogenic cell line were obtained from the mature cotyledonary somatic embryos after secondary somatic embryogenesis from two different cell lines (R4F14 and 119794-014). The suspension culture from embryonal masses produced five transgenic cell lines from one cell line (R4F14). Expression of the introduced β-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II) genes was detected by histochemistry and fluorometry, and by ELISA in 10 of the lines. Two lines showed only NPT II gene expression. Four of the five lines obtained after bombardment of suspensions of embryonal masses showed lower levels of expression of GUS and NPT II. The integration of the foreign genes was confirmed by polymerase chain reaction analyses and Southern hybridization for GUS and NPT II, and complex hybridization patterns were observed. The 12 transgenic lines obtained had a typical embryogenic morphology and were capable of maturation and germination. Over 40 transgenic trees were regenerated from one of the transgenic lines, and they have a normal phenotype.

Key words

β-glucuronidase neomycin phosphotransferase transgenic trees Biolistic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, K. A.; Binns, A. N.; Matzke, A. J. M., et al. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043; 1983.PubMedCrossRefGoogle Scholar
  2. Bommineni, V. R.; Chibbar, R. N.; Datla, R. S. S., et al. Transformation of white spruce (Picea glauca) somatic embryos by microprojectile bombardment. Plant Cell Rep. 13:17–23; 1993.CrossRefGoogle Scholar
  3. Braun, C. F.; Jilka, J. M.; Hemenway, C. L., et al. Interactions between plants, pathogens and insects: possibilities for engineering resistance. Curr. Opin. Biotech. 2:193–198; 1991.CrossRefGoogle Scholar
  4. Carlson, J. E.; Tulsieram, L. K.; Glaubitz, J. C., et al. Segregation of random amplified DNA markers in F1 progeny of conifers. Theor. Appl. Genet. 83:194–200; 1991.CrossRefGoogle Scholar
  5. Castillo, A. M.; Vasil, V.; Vasil, I. K. Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio Technology 12:1366–1371; 1994.Google Scholar
  6. Charest, P. J.; Calero, N.; Lachance, D., et al. The use of microprojectile DNA delivery to bypass the long life cycle of tree species in gene expression studies. Curr. Top. Bot. Res. 1:151–163; 1993a.Google Scholar
  7. Charest, P. J.; Calero, N.; Lachance, D., et al. Microprojectile DNA delivery in conifer species: factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep. 12:189–193; 1993b.CrossRefGoogle Scholar
  8. Charest, P. J.; Michel, M. F. Basics of plant genetic engineering and potential applications to tree species. Petawawa National Forestry Institute, Information Report PI-X-104. 1991:48p.Google Scholar
  9. Cheliak, W. M.; Klimaszewska, K. K. Genetic variation in somatic embryogenic response in open-pollinated families of black spruce. Theor. Appl. Genet. 82:185–190; 1991.CrossRefGoogle Scholar
  10. Christou, P.; Ford, T. L.; Kofron M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important, indica, and japonica, varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. BioTechnology 9:957–962; 1991.CrossRefGoogle Scholar
  11. Datla, R. S. S.; Bekkaoui, F.; Hammerlindl, J. K., et al. Improved high-level constitute foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94:139–149; 1993.CrossRefGoogle Scholar
  12. Datla, R. S. S.; Hammerlindl, J. K.; Pelcher, L. E., et al. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101:239–246; 1991.PubMedCrossRefGoogle Scholar
  13. Ellis, D. D.; McCabe, D. E.; McInnis, S., et al. Stable transformation ofPicea glauca by particle acceleration. Bio Technology 11:84–89; 1993.Google Scholar
  14. Gordon-Kamm, W. J.; Spencer, M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Bio-Technology 2:603–618; 1990.Google Scholar
  15. Herrera-Estrella, L.; Depicker, A.; van Montagu, M., et al. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213; 1983.CrossRefGoogle Scholar
  16. Horsch, R. B.; Fry, J. E.; Hoffman, N., et al. A simple and general method for transferring genes into plants. Science 227:1129–1132; 1985.Google Scholar
  17. Huang, Y.; Diner, A. M.; Karnosky, D. F..Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix decidua. In Vitro Cell Dev. Biol. 27:201–207; 1991.CrossRefGoogle Scholar
  18. Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W.. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.PubMedGoogle Scholar
  19. Kay, R.; Chan, A.; Daly, M., et al. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302; 1987.PubMedCrossRefGoogle Scholar
  20. Klein, T. M.; Wolf, E. D.; Wu, R., et al. High-velocity microprojectile for delivering nucleic acids into living cells. Nature 327:70–73; 1987.CrossRefGoogle Scholar
  21. Lelu, M. A.; Klimaszewska, K.; Jones, C. et al. A laboratory guide to somatic embryogenesis in spruce and larch. Petawawa National Forestry Institute, Information Report PI-X-111, 1993;57p.Google Scholar
  22. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning—a laboratory manual. Cold Spring Harbor, New York: Cold Springer Harbor Laboratory Press; 1982:545p.Google Scholar
  23. Raman, K. V.; Altman, D. W. Biotechnology initiative to achieve plant pest and disease resistance. Crop Protetion 13:591–596; 1994.CrossRefGoogle Scholar
  24. Register, J. C., III; Peterson, D. J.; Bell, P. J., et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25:951–961; 1994.PubMedCrossRefGoogle Scholar
  25. Robertson, D.; Weissinger, A. K.; Ackley, R., et al. Genetic transformation of Norway spruce (Picea abies L.) Karst using somatic embryo explants by microprojectile bombardment. Plant Mol. Biol. 19:925–935; 1992.PubMedCrossRefGoogle Scholar
  26. Seguin, A.; Lachance, D.; Charest, P. J. Transien gene expression and stable genetic transformation into conifer tissues by microprojectile bombardment. Plant Tissue Cult. Man. (In press).Google Scholar
  27. Somers, D. A.; Rines, H. W.; Gu, W., et al. Fertile, transgenic oat plants. BioTechnology 10:1589–1594; 1992.CrossRefGoogle Scholar
  28. Tomes, D. T.; Weissinger, A. K.; Ross, M., et al. Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol. Biol. 14:261–268; 1990.PubMedCrossRefGoogle Scholar
  29. Topfer, R.; Schell, J.; Steinbiss, H.-H. Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acid Res. 16:8725; 1988.PubMedCrossRefGoogle Scholar
  30. Vasil, V.; Castillo, A. M.; Fromm, M. E., et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. BioTechnology 10:667–674; 1992.CrossRefGoogle Scholar
  31. von Aderkas, P.; Bonga, J.; Klimazewska, K., et al. Comparison of larch embryogeny in vivo and in vitro. In: Ahuja, M. R., ed. Woody plant biotechnology. New York: Plenum Press; 1991:139–155.Google Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Pierre J. Charest
    • 1
  • Yvonne Devantier
    • 1
  • Denis Lachance
    • 1
  1. 1.Molecular Genetics and Tissue Culture Group, Petawawa National Forestry InstituteNatural Resources CanadaChalk RiverCanada

Personalised recommendations