In Vitro – Plant

, Volume 30, Issue 4, pp 204–209 | Cite as

Inhibition of cytosine methylation allows efficient cloning of T-DNA tagged plant DNA ofArabidopsis thaliana by plasmid rescue

  • Abul Mandal
  • Mats Sandgren
  • E. Tapio Palva
Genetic Transformation/Somatic Cell Genetics


Plasmid rescue can provide an efficient way of cloning T-DNA-tagged genomic DNA of plants. However, rescue has often been hampered by extensive rearrangements in the cloned DNA. We have demonstrated using a transgenic line ofArabidopsis thaliana that the plant DNA flanking the T-DNA tag was heavily cytosine methylated. This methylation could be completely inhibited by growing the plants in the presence of azacytidine. Rescue of the T-DNA tag together with the flanking plant genomic DNA sequences from nontreated control plants into an modified cytosine restriction (mcr) proficient strain ofEscherichia coli resulted in rearrangements of the majority of the rescued plasmids. These rearrangements could be avoided if the methylation was inhibited in the transgenic plants by azacytidine treatment or by cloning into anmcr-deficient strain ofE. coli. The results indicate that cytosine methylation of the DNA in the transgenic plants is the main cause of the DNA rearrangements observed during plasmid rescue and suggest efficient strategies to eliminate such artifacts.

Key words

azacytidine methylation Arabidopsis thaliana T-DNA tagging plasmid rescue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amasino, R. M.; Powell, A. L. T.; Gordon, M. P. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. Gen. Genet. 197:437–446; 1984.PubMedCrossRefGoogle Scholar
  2. Andre, D.; Colau, D.; Schell, J., et al. Gene tagging in plants by a T-DNA insertion mutagen that generates APH(3′)II-plant gene fusions. Mol. Gen. Genet. 204:512–518; 1986.CrossRefGoogle Scholar
  3. Behringer, F. J.; Medford, J. I. A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion. Plant Mol. Biol. Rep. 10:190–198; 1992.CrossRefGoogle Scholar
  4. Bochardt, A.; Hodal, L.; Palmgren, G., et al. DNA methylation is involved in maintainance of an unusual expression pattern of an introduced gene. Plant. Physiol. 99:409–414; 1992.PubMedGoogle Scholar
  5. Cherdshwasart, W. Assessing methylation of inserted DNA by restriction with isoschizomeric enzymes and inducing demethylation with 5-azacytidine. In: Negrutiu, I.; Gharti-Cchetri, G. B., eds. Structural and functional analysis of genomes and genes: a laboratory guide for cellular and molecular plant biology, 4. Basel: Birkhäuser Verlag; 1991:227–286.Google Scholar
  6. Creusot, F.; Acs, G.; Christman, J. K. Inhibition of DNA methyltransferase and induction of Freind erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J. Biol. Chem. 257:2041–2074; 1982.PubMedGoogle Scholar
  7. Dower, W. J.; Miller, J. F.; Ragsdale, C. W. High efficiency transformation ofE. coli by high voltage electroporation. Nucleic Acids Res. 16:6127–6145; 1988.PubMedCrossRefGoogle Scholar
  8. Feldmann, K. A. T-DNA insertion mutagenesis inArabidopsis: mutational spectrum. Plant J. 1:71–82; 1991.CrossRefGoogle Scholar
  9. Feldmann, K. A.; Marks, M. D.; Christianson, M. L., et al. A dwarf mutant ofArabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354; 1989.PubMedCrossRefGoogle Scholar
  10. Garfin, D. E.; Goodman, H. M. Nucleotide sequences at the cleavage sites of two restriction endonucleases fromHemophilus parainfluenzae. Biochem. Biophys. Res. Comm. 59:108–116; 1974.PubMedCrossRefGoogle Scholar
  11. Gelvin, S. B.; Karcher, S. J.; DiRita, V. J. Methylation of T-DNA inAgrobacterium tumefaciens and in several crown gall tumors. Nucleic Acids Res. 11:159–174; 1983.PubMedCrossRefGoogle Scholar
  12. Goldsborough, A.; Bevan, M. New patterns of gene activity in plants detected using anAgrobacterium vector. Plant Mol. Biol. 16:263–269; 1991.CrossRefGoogle Scholar
  13. Gruenbaum, Y.; Naveh-Many, T.; Cedar, H., et al. Sequence specificity of methylation in higher plant DNA. Nature 292:860–862; 1981.PubMedCrossRefGoogle Scholar
  14. Heitman, J.; Model, P. Site-specific methylases induce the SOS DNA repair response inEscherichia coli. J. Bacteriol. 169:3243–3250; 1987.PubMedGoogle Scholar
  15. Hepburn A. G.; Clarke, L. E.; Pearson, L., et al. The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J. Mol. Appl. Genet. 2:315–329; 1983.PubMedGoogle Scholar
  16. Hsiao, W. L.; Gattoni-Celli S.; Weinstein, I. B.. Effect of 5-azacytidine on the progressive nature of cell transformation. Mol. Cell Biol. 5:1800–1803; 1985.PubMedGoogle Scholar
  17. Jones, P.; Alterating gene expression with 5-azacytidine. Cell 40:485–486; 1985.PubMedCrossRefGoogle Scholar
  18. Kertbundit, S.; De Greve, H.; Deboeck, F., et al.In vivo random β-glucuronidase gene fusions inArabidopsis thaliana. Proc. Natl. Acad. Sci. USA 88:5212–5216; 1991.PubMedCrossRefGoogle Scholar
  19. Koncz, C.; Martini, N.; Mayerhofer, R., et al. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86:8467–8471; 1989.PubMedCrossRefGoogle Scholar
  20. Koncz, C.; Mayerhofer, R.; Koncz-Kalman, Z., et al. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana. EMBO J., 9:1337–1346; 1990.PubMedGoogle Scholar
  21. Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type ofAgrobacterium binary vector. Mol. Gen. Genet. 204:383–396; 1986.CrossRefGoogle Scholar
  22. Mandal, A.; Lang, V.; Orczyk, W., et al. Improved efficiency for T-DNA-mediated transformation and plasmid rescue inArabidopsis thaliana. Theor. Appl. Genet. 86:621–628; 1993.CrossRefGoogle Scholar
  23. Matzke, M. A.; Primig, M.; Trnovsky, J., et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8:643–649; 1989.PubMedGoogle Scholar
  24. Mayerhofer, R.; Koncz-Kalman, Z.; Nawrath, C., et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10:697–704; 1991.PubMedGoogle Scholar
  25. Meyer, P.; Heidman, I.; Niedendof, I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4:89–100; 1993.PubMedCrossRefGoogle Scholar
  26. Mohandas, T.; Sparkes, R. S.; Shapiro, L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396; 1981.PubMedCrossRefGoogle Scholar
  27. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.CrossRefGoogle Scholar
  28. Nick, H.; Boven, B.; Ferl, R. J., et al. Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319:243–246; 1986.CrossRefGoogle Scholar
  29. Ott, R. W.; Chua, N. H. Enhancer sequences fromArabidopsis thaliana obtained by library transformation ofNicotiana tabacum. Mol. Gen. Genet. 223:169–179; 1990.PubMedCrossRefGoogle Scholar
  30. Palmgren, G.; Mattsson, O.; Okkels, F. T.. Treatment ofAgrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. Plant Mol. Biol. 21:429–435; 1993.PubMedCrossRefGoogle Scholar
  31. Raleigh, E. A. Organization and function of themcrBC genes ofEscherichia coli K-12. Mol. Microbiol. 6:1079–1086; 1992.PubMedCrossRefGoogle Scholar
  32. Raleigh, E. A.; Murray, N. E.; Revel, H., et al. McrA and McrB restriction phenotypes implications for gene cloning. Nucleic Acids Res. 16:1563–1575; 1988.PubMedCrossRefGoogle Scholar
  33. Raleigh, E. A.; Wilson, G.Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. USA 83:9070–9074; 1986.PubMedCrossRefGoogle Scholar
  34. Razin, A.; Riggs, A. D. DNA methylation and gene function. Science 210:604–610; 1980.PubMedCrossRefGoogle Scholar
  35. Ross, T. K.; Achberger, E. C.; Braymer, H. D. Identification of a second polypeptide required formcrB restriction of 5-methylocytosine-containing DNA inEscherichia coli K12. Mol. Gen. Genet. 216:402–407; 1989.PubMedCrossRefGoogle Scholar
  36. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manula, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.Google Scholar
  37. Sano, H.; Kamada, I.; Youssefian, S. et al. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and under-methylation of genomic DNA. Mol. Gen. Genet. 220:441–447; 1990.CrossRefGoogle Scholar
  38. Sano, H.; Kamada, I.; Youssefian, S., et al. Correlation between DNA undermethylation and dwarfism in maize. Biochem. Biophys. Acta 1009;35–38; 1989.Google Scholar
  39. Southern, E. Detection of specific DNA sequences among fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517; 1975.PubMedCrossRefGoogle Scholar
  40. Teeri, T. H.; Herrera-Estrella, L.; Depicker, A., et al. Identification of plant promotersin situ by T-DNA-mediated transcriptional fusions to thenptII gene. EMBO J. 5:1755–1760; 1986.PubMedGoogle Scholar
  41. Topping, J. F.; Wei, W.; Lindsay, K. Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019; 1991.PubMedGoogle Scholar
  42. Van Lijsebettens, M.; Vanderhaeghen, R.; Van Montagu, M. Insertional mutagenesis inArabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor. Appl. Genet. 81:277–284; 1991.CrossRefGoogle Scholar
  43. Waalwijk, C.; Flavell, R. A.Mspl, an isoschizomer ofHpaII which cleaves both unmethylated and methylatedHpaII sites. Nucleic Acids Res. 5:3231–3236; 1978.PubMedCrossRefGoogle Scholar
  44. Waite-Rees, P. A.; Keating, C. J.; Moran, L. S., et al. Characterization and expression of theEscherichia coli Mrr restriction system. J. Bacteriol. 173:5207–5219; 1991.PubMedGoogle Scholar
  45. Weber, H.; Ziechman, C.; Graessmann, A.,In vitro DNA methylation inhibits gene expression in transgenic tobacco. EMBO J. 9:4409–4415; 1990.PubMedGoogle Scholar
  46. Woodcock, D. M.; Crowther, P. J.; Doherty, J., et al. Quantitative evaluation ofEscherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17:3469–3478; 1989.PubMedCrossRefGoogle Scholar
  47. Yanofsky, M. F.; Ma, H.; Bowman, J. L., et al. The protein encoded by theArabidopsis homeotic geneagamous resembles transcription factors. Nature 346:35–39; 1990.PubMedCrossRefGoogle Scholar
  48. Zhu, Z.; Huges, K. W.; Huang, L. Effects of 5-azacytidine on transformation and gene expression inNicotiana tabacum. In Vitro Cell. Dev. Biol. 27P:77–83; 1991.Google Scholar

Copyright information

© Society for In Vitro Biology 1994

Authors and Affiliations

  • Abul Mandal
    • 1
  • Mats Sandgren
    • 1
  • E. Tapio Palva
    • 1
  1. 1.Department of Molecular Genetics, Uppsala Genetic CenterSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations