Skip to main content
Log in

Inhibition of cytosine methylation allows efficient cloning of T-DNA tagged plant DNA ofArabidopsis thaliana by plasmid rescue

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro – Plant Aims and scope Submit manuscript

Summary

Plasmid rescue can provide an efficient way of cloning T-DNA-tagged genomic DNA of plants. However, rescue has often been hampered by extensive rearrangements in the cloned DNA. We have demonstrated using a transgenic line ofArabidopsis thaliana that the plant DNA flanking the T-DNA tag was heavily cytosine methylated. This methylation could be completely inhibited by growing the plants in the presence of azacytidine. Rescue of the T-DNA tag together with the flanking plant genomic DNA sequences from nontreated control plants into an modified cytosine restriction (mcr) proficient strain ofEscherichia coli resulted in rearrangements of the majority of the rescued plasmids. These rearrangements could be avoided if the methylation was inhibited in the transgenic plants by azacytidine treatment or by cloning into anmcr-deficient strain ofE. coli. The results indicate that cytosine methylation of the DNA in the transgenic plants is the main cause of the DNA rearrangements observed during plasmid rescue and suggest efficient strategies to eliminate such artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amasino, R. M.; Powell, A. L. T.; Gordon, M. P. Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. Gen. Genet. 197:437–446; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Andre, D.; Colau, D.; Schell, J., et al. Gene tagging in plants by a T-DNA insertion mutagen that generates APH(3′)II-plant gene fusions. Mol. Gen. Genet. 204:512–518; 1986.

    Article  CAS  Google Scholar 

  • Behringer, F. J.; Medford, J. I. A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion. Plant Mol. Biol. Rep. 10:190–198; 1992.

    Article  CAS  Google Scholar 

  • Bochardt, A.; Hodal, L.; Palmgren, G., et al. DNA methylation is involved in maintainance of an unusual expression pattern of an introduced gene. Plant. Physiol. 99:409–414; 1992.

    PubMed  CAS  Google Scholar 

  • Cherdshwasart, W. Assessing methylation of inserted DNA by restriction with isoschizomeric enzymes and inducing demethylation with 5-azacytidine. In: Negrutiu, I.; Gharti-Cchetri, G. B., eds. Structural and functional analysis of genomes and genes: a laboratory guide for cellular and molecular plant biology, 4. Basel: Birkhäuser Verlag; 1991:227–286.

    Google Scholar 

  • Creusot, F.; Acs, G.; Christman, J. K. Inhibition of DNA methyltransferase and induction of Freind erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J. Biol. Chem. 257:2041–2074; 1982.

    PubMed  CAS  Google Scholar 

  • Dower, W. J.; Miller, J. F.; Ragsdale, C. W. High efficiency transformation ofE. coli by high voltage electroporation. Nucleic Acids Res. 16:6127–6145; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, K. A. T-DNA insertion mutagenesis inArabidopsis: mutational spectrum. Plant J. 1:71–82; 1991.

    Article  CAS  Google Scholar 

  • Feldmann, K. A.; Marks, M. D.; Christianson, M. L., et al. A dwarf mutant ofArabidopsis generated by T-DNA insertion mutagenesis. Science 243:1351–1354; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Garfin, D. E.; Goodman, H. M. Nucleotide sequences at the cleavage sites of two restriction endonucleases fromHemophilus parainfluenzae. Biochem. Biophys. Res. Comm. 59:108–116; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S. B.; Karcher, S. J.; DiRita, V. J. Methylation of T-DNA inAgrobacterium tumefaciens and in several crown gall tumors. Nucleic Acids Res. 11:159–174; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Goldsborough, A.; Bevan, M. New patterns of gene activity in plants detected using anAgrobacterium vector. Plant Mol. Biol. 16:263–269; 1991.

    Article  Google Scholar 

  • Gruenbaum, Y.; Naveh-Many, T.; Cedar, H., et al. Sequence specificity of methylation in higher plant DNA. Nature 292:860–862; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Heitman, J.; Model, P. Site-specific methylases induce the SOS DNA repair response inEscherichia coli. J. Bacteriol. 169:3243–3250; 1987.

    PubMed  CAS  Google Scholar 

  • Hepburn A. G.; Clarke, L. E.; Pearson, L., et al. The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J. Mol. Appl. Genet. 2:315–329; 1983.

    PubMed  CAS  Google Scholar 

  • Hsiao, W. L.; Gattoni-Celli S.; Weinstein, I. B.. Effect of 5-azacytidine on the progressive nature of cell transformation. Mol. Cell Biol. 5:1800–1803; 1985.

    PubMed  CAS  Google Scholar 

  • Jones, P.; Alterating gene expression with 5-azacytidine. Cell 40:485–486; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kertbundit, S.; De Greve, H.; Deboeck, F., et al.In vivo random β-glucuronidase gene fusions inArabidopsis thaliana. Proc. Natl. Acad. Sci. USA 88:5212–5216; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C.; Martini, N.; Mayerhofer, R., et al. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86:8467–8471; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Koncz, C.; Mayerhofer, R.; Koncz-Kalman, Z., et al. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana. EMBO J., 9:1337–1346; 1990.

    PubMed  CAS  Google Scholar 

  • Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type ofAgrobacterium binary vector. Mol. Gen. Genet. 204:383–396; 1986.

    Article  CAS  Google Scholar 

  • Mandal, A.; Lang, V.; Orczyk, W., et al. Improved efficiency for T-DNA-mediated transformation and plasmid rescue inArabidopsis thaliana. Theor. Appl. Genet. 86:621–628; 1993.

    Article  CAS  Google Scholar 

  • Matzke, M. A.; Primig, M.; Trnovsky, J., et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8:643–649; 1989.

    PubMed  CAS  Google Scholar 

  • Mayerhofer, R.; Koncz-Kalman, Z.; Nawrath, C., et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10:697–704; 1991.

    PubMed  CAS  Google Scholar 

  • Meyer, P.; Heidman, I.; Niedendof, I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 4:89–100; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mohandas, T.; Sparkes, R. S.; Shapiro, L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nick, H.; Boven, B.; Ferl, R. J., et al. Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319:243–246; 1986.

    Article  CAS  Google Scholar 

  • Ott, R. W.; Chua, N. H. Enhancer sequences fromArabidopsis thaliana obtained by library transformation ofNicotiana tabacum. Mol. Gen. Genet. 223:169–179; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Palmgren, G.; Mattsson, O.; Okkels, F. T.. Treatment ofAgrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. Plant Mol. Biol. 21:429–435; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, E. A. Organization and function of themcrBC genes ofEscherichia coli K-12. Mol. Microbiol. 6:1079–1086; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, E. A.; Murray, N. E.; Revel, H., et al. McrA and McrB restriction phenotypes implications for gene cloning. Nucleic Acids Res. 16:1563–1575; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, E. A.; Wilson, G.Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. USA 83:9070–9074; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Razin, A.; Riggs, A. D. DNA methylation and gene function. Science 210:604–610; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ross, T. K.; Achberger, E. C.; Braymer, H. D. Identification of a second polypeptide required formcrB restriction of 5-methylocytosine-containing DNA inEscherichia coli K12. Mol. Gen. Genet. 216:402–407; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manula, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sano, H.; Kamada, I.; Youssefian, S. et al. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and under-methylation of genomic DNA. Mol. Gen. Genet. 220:441–447; 1990.

    Article  CAS  Google Scholar 

  • Sano, H.; Kamada, I.; Youssefian, S., et al. Correlation between DNA undermethylation and dwarfism in maize. Biochem. Biophys. Acta 1009;35–38; 1989.

    CAS  Google Scholar 

  • Southern, E. Detection of specific DNA sequences among fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Teeri, T. H.; Herrera-Estrella, L.; Depicker, A., et al. Identification of plant promotersin situ by T-DNA-mediated transcriptional fusions to thenptII gene. EMBO J. 5:1755–1760; 1986.

    PubMed  CAS  Google Scholar 

  • Topping, J. F.; Wei, W.; Lindsay, K. Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019; 1991.

    PubMed  CAS  Google Scholar 

  • Van Lijsebettens, M.; Vanderhaeghen, R.; Van Montagu, M. Insertional mutagenesis inArabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor. Appl. Genet. 81:277–284; 1991.

    Article  Google Scholar 

  • Waalwijk, C.; Flavell, R. A.Mspl, an isoschizomer ofHpaII which cleaves both unmethylated and methylatedHpaII sites. Nucleic Acids Res. 5:3231–3236; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Waite-Rees, P. A.; Keating, C. J.; Moran, L. S., et al. Characterization and expression of theEscherichia coli Mrr restriction system. J. Bacteriol. 173:5207–5219; 1991.

    PubMed  CAS  Google Scholar 

  • Weber, H.; Ziechman, C.; Graessmann, A.,In vitro DNA methylation inhibits gene expression in transgenic tobacco. EMBO J. 9:4409–4415; 1990.

    PubMed  CAS  Google Scholar 

  • Woodcock, D. M.; Crowther, P. J.; Doherty, J., et al. Quantitative evaluation ofEscherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17:3469–3478; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M. F.; Ma, H.; Bowman, J. L., et al. The protein encoded by theArabidopsis homeotic geneagamous resembles transcription factors. Nature 346:35–39; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Z.; Huges, K. W.; Huang, L. Effects of 5-azacytidine on transformation and gene expression inNicotiana tabacum. In Vitro Cell. Dev. Biol. 27P:77–83; 1991.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A., Sandgren, M. & Palva, E.T. Inhibition of cytosine methylation allows efficient cloning of T-DNA tagged plant DNA ofArabidopsis thaliana by plasmid rescue. In Vitro Cell.Dev.Biol.–Plant 30, 204–209 (1994). https://doi.org/10.1007/BF02823033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02823033

Key words

Navigation