Advertisement

Optimized conditions for rapd analysis inPinus radiata

  • Ewa Ostrowska
  • Morley Muralitharan
  • Stephen Chandler
  • Peter Volker
  • Sandra Hetherington
  • Robin Mitra
  • Frank Dunshea
Genetic Transformation/Somatic Cell Genetics Technical Note

Summary

Pinus radiata is the most important softwood plantation species in Australia and New Zealand. The improtance of this species in forestry has led to an increasing demand to improve the efficiency of selection time of the production population, which currently takes 13 yr by traditional methods. With the application of molecular biology techniques such as random amplified polymorphic DNA (RAPD) the selection period can be reduced to 6 yr. In this study, the conditions for RAPD were optimized and the feasibility of this marker system was investigated with different families ofPinus radiata from Tasmania and South Australia. Best concentrations of Taq-polymerase (1 U), magnesium chloride (2 mM), and template DNA (20 ng) were selected to test different polymerase chain reaction (PCR) thermocycler profiles. Devey's et al. (1996) program was the most effective for production of clear RAPD bands. Best conditions were investigated to screen 10–12 bp arbitrary Breasatec and Operon primers. Both types were found useful at detecting genetic variation between families. Seventy percent and thirty percent of the selected Bresatec and Operon primers, respectively, produced polymorphic bands.

Key words

Polymorphisms RAPD Pinus radiata genetic diversity PCR primers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlson, J. E.; Tulsieram, L. K.; Glaubitz, J. C., et al. Segregation of random amplified DNA markers in F1 progeny of conifers.Theor. Appl. Genet. 83:194–200; 1991.CrossRefGoogle Scholar
  2. 2.
    Devey, M. E.; Bell, J. C.; Smith, D. N., et al. A genetic linkage map forPinus radiata based on RFLP, RAPD, and microsatellite markers.Theor. Appl. Genet. 92:673–679; 1996.CrossRefGoogle Scholar
  3. 3.
    Devey, M. E.; Delfino-Mix, A.; Kinloch, B. B., et al. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine.Proc. Natl. Acad. Sci. USA 92:2066–2070; 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Erlich, H. A.; Kazarian, H. H., Jr.; Gibbs, R. A., Introduction—Polymerase chain reaction. Erlich, H. A.; Gibbs, R.; Kazarian, H. H., Jr., eds. Current communications in molecular biology. Plainview, NY: Cold Spring Harbor Laboratory Press; 1989:1–4.Google Scholar
  5. 5.
    Jobes, D. V.; Hurley, D. L.; Thien, L. B. Plant DNA isolation: method to efficiently remove polyphenolics, polysaccharides and RNA.Taxon 44:379–389; 1995.CrossRefGoogle Scholar
  6. 6.
    Keller, G. H.; Manak, M. M. DNA probes, background, application, procedures. 2nd ed. Macmillan Publishers; 1993:1–288.Google Scholar
  7. 7.
    Landry, B. S. DNA mapping in plants. Glick, B. R.; Thompson, J. E., eds.Methods in plant molecular biology and biotechnology. London, England: CRC Press; 1993:269–283.Google Scholar
  8. 8.
    Lu, M. Z.; Szmidt, A. E.; Wang, X. R. Inheritance of RAPD fragments in haploid and diploid tissues ofPinus sylvestris (L.).Heredity 74:582–589; 1995.Google Scholar
  9. 9.
    Mosseler, A.; Egger, K. N.; Hughes, G. A. Low levels of genetic diversity in red pine confirmed by random amplified polymorphic DNA markers.Can. J. For. Res. 22:1332–1337; 1972.CrossRefGoogle Scholar
  10. 10.
    Muralitharan, M. S.; Stuart, S.; Graham, M. (1994)Methods in Plant Molecular Biology Techniques. Proceedings of Molecular Biology Workshop. July 14–16, 1994, Launceston, Tasmania. Available from: Applied Biology, University of Tasmania; pp. 1–98), Launceston.Google Scholar
  11. 11.
    Neale, D. B.; Williams, C. G. Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement.Can. J. For. Res. 21:545–554; 1991.CrossRefGoogle Scholar
  12. 12.
    Nelson, C. D.; Kubisiak, T. L.; Stine, M., et al. A genetic linkage map of longleaf pine (Pinus palustris Mill.) based on random amplified polymorphic DNAs.J. Hered. 85:433–439; 1994.Google Scholar
  13. 13.
    Nybom, H. DNA fingerprinting—a useful tool in fruit breeding.Euphytica 77:59–64; 1994.CrossRefGoogle Scholar
  14. 14.
    Plomion, C.; Bahrman, N.; Durel, C. E., et al. Genomic mapping inPinus pinaster (maritime pine) using RAPD and protein markers.Heredity 74:661–668; 1994.Google Scholar
  15. 15.
    Plomion, C.; O'Malley, D. M.; Dure, C. E. Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual.Theor. Appl. Genet. 90:1028–1034; 1995.CrossRefGoogle Scholar
  16. 16.
    Sambrook, J.; Fritsch, E. F.; Maniatis, T.Molecular cloning: a laboratory manual, Plainview, NY: Cold Spring Harbor Laboratory Press; 1989:5.3–6.6.Google Scholar
  17. 17.
    Smith, D. N.; Devey, M. E. Occurrence and inheritance of microsatellites inPinus radiata.Genome 37:977–983; 1994.PubMedGoogle Scholar
  18. 18.
    White, T.L. A conceptual framework for tree improvement programs.New For. 4:325–342; 1987.Google Scholar
  19. 19.
    Wilhelmina, T. G.; McNicol, R. The use of RAPD markers for the identification of Sitka spruce (Picea sitchensis) clones.Heredity 75:126–132; 1995.Google Scholar

Copyright information

© Society for In Vitro Biology 1998

Authors and Affiliations

  • Ewa Ostrowska
    • 1
    • 2
  • Morley Muralitharan
    • 2
    • 3
  • Stephen Chandler
    • 4
  • Peter Volker
    • 5
  • Sandra Hetherington
    • 5
  • Robin Mitra
    • 6
  • Frank Dunshea
    • 1
  1. 1.Agriculture VictoriaWerribeeAustralia
  2. 2.Department of Chemical SciencesVictoria University of TechnologySt AlbansAustralia
  3. 3.School of AgricultureCharles Sturt UniversityWagga WaggaAustralia
  4. 4.FlorigeneCollingwoodAustralia
  5. 5.ANM Forest ManagementNew NorfolkAustralia
  6. 6.School of AgricultureLaTiobe UniversityBundooraAustralia

Personalised recommendations