Cell Biophysics

, Volume 27, Issue 1, pp 31–45 | Cite as

Syngeneic anti-idiotypic antibodies eliminate excess radiolabeled idiotypes at experimental radioimmunolocalization

  • A. Ullen
  • K. Riklund Åhlström
  • R. Makiya
  • T. Stigbrand


Significant improvements in tumor/nontumor ratio can be achieved by injections of nonlabeled anti-idiotypic monoclonal antibodies (MAbs) during radioimmunolocalization and radioimmunotherapy using MAbs to target experimental tumors. The in vivo effects of an anti-idiotypic MAb (αH7) against a radioiodinated, high affinity, low dissociation rate, monoclonal antiplacental alkaline phosphatase antibody (H7) was investigated. Following in vivo injection of the anti-idiotypic MAb, the radioactivity in experimental tumors was found to decrease only 25% while the reduction of corresponding radioactivity in nontumor tissues amounted to 65–85%, compared to the group receiving no anti-idiotypic MAbs. These results indicate that it is possible to partially clear the circulation and nontumor tissues from excess of radiolabeled idiotypic antibody, without significant decrease in specific tumor localization, increasing the tumor/ nontumor ratio three- to fourfold. Circulating nontumor targeting radiolabeled antibodies is one of the major limiting factors in radioimmunotherapy today. Injection of anti-idiotypic MAbs could selectively significantly reduce the radiation dose to radiosensitive tissues, i.e., bone marrow and intestine, thus improving efficiency in radioimmunoscintigraphy and radioimmunotherapy.

Index Entries

Monoclonal antibodies anti-idiotypic antibodies biospecific interaction analyses placental alkaline phosphatase radioimmunolocalization radioimmunotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldenberg, D., Deland, F., and Kim, E. (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for detection and localization of diverse cancers by external photoscanning.N. Engl. J. Med. 298, 1384–1388.PubMedCrossRefGoogle Scholar
  2. 2.
    Cheung, N.-K., Saarinen, U., Neely, J., Landmeir, B., Donovan, D., and Coccia, P. (1985) Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells.Cancer Res. 45, 2642–2649.PubMedGoogle Scholar
  3. 3.
    Scheinberg, D., Lovett, D., Divig, C., et al. (1991) A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide.J. Clin. Oncol. 9, 478–490.PubMedGoogle Scholar
  4. 4.
    Wheldon, T. E. and O’Donoghue, J. A. (1990) The radiobiology of targeted radiotherapy.Int. J. Biol. 58, 1.Google Scholar
  5. 5.
    Paganelli, G., Pervez, S., Siccardi, A., Rowlinson, G., Deleide, G., Chioleiro, F., et al. (1990) Intraperitoneal radiolocalisation of tumors pretargeted by biotinylated monoclonal antibodies.Int. J. Cancer 45, 1184–1189.PubMedCrossRefGoogle Scholar
  6. 6.
    Paganelli, G., Malcovati, M., and Fazio, F. (1991) Monoclonal antibody pretargeting techniques for tumor localisation: the avidinbiotin system.Nucl. Med. Commun. 12, 211–234.PubMedCrossRefGoogle Scholar
  7. 7.
    Norrgren, K., Strand, S., Nilsson, R., Lindgren, L., and Lilliehorn, P. (1991) Evaluation of extracorporeal immunoadsorption for reduction of the blood background in diagnostic and therapeutic application of radiolabeled antibodies.Antibody Immunoconj. Radiopharm. 4, 907–914.Google Scholar
  8. 8.
    Norrgren, K., Strand, S., Nilsson, R., Lindgren, L., and Sjögren, H. (1993) A general, extracorporeal immunoadsorption method to increase the tumor-to-normal tissue ratio in radioimmunoimaging and radioimmunotherapy.J. Nucl. Med. 34, 448–454.PubMedGoogle Scholar
  9. 9.
    Fjeld, J., Benestad, H., Stigbrand, T., and Nustad, K. (1988) In vivo evaluation of radiolabeled antibodies with antigen-coated polymer particles in diffusion chambers.J. Immunol. Methods 109, 1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Sivalpenko, G., Kalofonos, H., Stewart, J., Hird, V., and Epenetos, A. (1992) Pharmacokinetics of radiolabeled murine monoclonal antibodies administered intravenously and intraperitoneally to patients with cancer for diagnosis and therapy.J. Pharm. Med. 2, 155–173.Google Scholar
  11. 11.
    Blumenthal, R., Sharkey, R., Kashi, R., and Goldenberg, D. (1989) Comparison of the therapeutic efficacy and host toxicity of two different131I-labeled antibodies and their fragments in the GW-39 colonic cancer xenograft model.Int. J. Cancer 44, 292–300.PubMedCrossRefGoogle Scholar
  12. 12.
    Stigbrand, T., Hietala, S.-O., Johansson, B., Riklund, K., and Ekelund, L. (1989) Tumor radioimmunolocalization in nude mice by use of antiplacental alkaline phosphatase monoclonal antibodies.Tumor Biol. 10, 243–251.CrossRefGoogle Scholar
  13. 13.
    Buchegger, F., Vacca, A., Carrel, S., Schreyer, M., and Mach, J.-P. (1988) Radioimmunotherapy of human colon carcinoma by131I-labeled monoclonal antibodies in a nude mice model.Int. J. Cancer 41, 412–427.CrossRefGoogle Scholar
  14. 14.
    Sharkey, R., Blumenthal, R., and Goldenberg, D. (1990) Anti-antibody enhancement of tumor imaging, inCancer Imaging with Radiolabeled Antibodies (Goldenberg, D., ed.), Kluwer, Norwell, MA, pp. 433–455.Google Scholar
  15. 15.
    DeNardo, G., DeNardo, S., Kukis, D., Diril, H., Suey, C., and Meares, C. (1991) Strategies for enhancement of radioimmunotherapy.Nucl. Med. Biol. 18, 633–640.Google Scholar
  16. 16.
    Brown, B., Davis, G., Saltzgaber-Muller, J., Simon, P., Ho, M., and Shaw, P. (1987) Tumor-specific genetically engineered murine/human chimeric monoclonal antibody.Cancer Res. 47, 3577–3583.PubMedGoogle Scholar
  17. 17.
    Spar, I., Goodland, R., and Desidero, M. (1964) Immunological removal of circulating131I-labeled rabbit antibody to rat fibrinogen in normal and tumor-bearing rats.J. Nucl. Med. 5, 428–443.PubMedGoogle Scholar
  18. 18.
    Ullen, A., Nilsson, B., Riklund Åhlström, K., Makiya, R., and Stigbrand, T. (1995) In vivo and in vitro interactions between idiotypic and antiidiotypic monoclonal antibodies against placental alkaline phosphatase.J. Immunol. Methods, in press.Google Scholar
  19. 19.
    Goldenberg, D., Sharkey, R., and Ford, E. (1987) Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies.J. Nucl. Med. 28, 1604–1610.PubMedGoogle Scholar
  20. 20.
    Sharkey, R., Boerman, O., Natale, A., Pawlyk, D., Monestier, M., Losman, M., and Goldenberg, D. (1992) Enhanced clearance of radiolabeled murine monoclonal antibody by a syngeneic anti-idiotype antibody in tumor bearing nude mice.Int. J. Cancer 51, 266–273.PubMedCrossRefGoogle Scholar
  21. 21.
    Ullén, A., Sandström, P., Åhlström Riklund, K., Sundström, B., Nilsson, B., ärlestig, L., and Stigbrand, T. (1995) Use of anticytokeratin monoclonal antiidiotypic antibodies to improve tumor/non tumor ratio at experimental radioimmunolocalisation.Cancer Res., in press.Google Scholar
  22. 22.
    Goodwin, D., Meares, C., Diamanti, C., McCall, M., Corazon, L., Torti, F., et al. (1984) Use of specific antibody for rapid clearance of circulating blood background from radiolabeled tumor imaging proteins.Eur. J. Nucl. Med. 9, 209–215.PubMedCrossRefGoogle Scholar
  23. 23.
    Pedley, B., Dale, R., Boden, J., Begent, R., Keep, P., and Green, A. (1989) The effect of second antibody clearance on the distribution and dosimetry of radiolabelled anti-CEA antibody in a human colonic tumor xenograft model.Int. J. Cancer 43, 713–718.PubMedCrossRefGoogle Scholar
  24. 24.
    Sharkey, R., Primus, J., and Goldenberg, D. (1984) Second antibody clearance of radiolabeled antibody in cancer radioimmunodetection.Proc. Natl. Acad. Sci. USA 81, 2843–2846.PubMedCrossRefGoogle Scholar
  25. 25.
    Buchegger, F., Pèlegrin, A., Bischof-Delaloye, A., and Mach, J.-P. (1990) Iodine-131-labeled MAb F(ab)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinomas grafted in nude mice.J. Nucl. Med. 31, 1035–1044.PubMedGoogle Scholar
  26. 26.
    Buchsbaum, D., Langmuir, V., and Wessels, B. (1993) Experimental radioimmunotherapy.Med. Phys. 20, 551–567.PubMedCrossRefGoogle Scholar
  27. 27.
    Makiya, R. and Stigbrand, T. (1992) Placental alkaline phosphatase has a binding site for the human IgG internalization in Hep2 cells.Eur. J. Biochem. 205, 341–345.PubMedCrossRefGoogle Scholar
  28. 28.
    Makiya, R. and Stigbrand, T. (1992) Placental alkaline phosphatase is related to human IgG internalization in Hep 2 cells.Biochem. Biophys. Res. Commun. 182, 624–630.PubMedCrossRefGoogle Scholar
  29. 29.
    Makiya, R. and Stigbrand, T. (1992) Placental alkaline phosphatase, a GPI-anchored protein, is clustered in clathrin-coated vesicles.Biochem. Biophys. Res. Commun. 183, 803–808.PubMedCrossRefGoogle Scholar
  30. 30.
    Riklund, K., Edbom, G., Makiya, R., Johansson, B., Gerdes, U., Hietala, S.-O., et al. (1991) Radioimmunoscintigraphy of gynecologic tumors with131I-labeled anti-PLAP monoclonal antibodies.Acta Radiol. 32, 375–380.PubMedCrossRefGoogle Scholar
  31. 31.
    Millán, J. and Stigbrand, T. (1983) Antigenic determinants of human placental and testicular placental-like alkaline phosphatases as mapped by monoclonal antibodies.Eur. J. Biochem. 136, 1–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Sundström, B., Johansson, B., Hietala, S.-O., and Stigbrand, T. (1989) Diversity in immunoreactivity of tumor derived cytokeratin monoclonal antibodies.J. Histochem. Cytochem. 37, 1845–1854.PubMedGoogle Scholar
  33. 33.
    Greenwood, F., Hunter, W., and Glover, J. S. (1963) The preparation of131I-labeled human growth hormone of high specific radioactivity.J. Biochem. 89, 114–123.Google Scholar
  34. 34.
    Holmgren, P.-Å. and Stigbrand, T. (1976) Purification and partial characterization of two genetic variants of placental alkaline phosphatase.Biochem. Genetics 14, 777–789.CrossRefGoogle Scholar
  35. 35.
    Löfås, S. and Johansson, B. (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands.J. Chem. Soc. Chem. Commun. 21, 1526–1528.CrossRefGoogle Scholar
  36. 36.
    Fägerstam, L., Frostell, Å., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M., and Butt, H. (1990) Detection of antigen-antibody interactions by surface plasmon resonance.J. Mol. Recog. 3, 208–214.CrossRefGoogle Scholar
  37. 37.
    Riklund, K., Makiya, R., Sundström, B., Thornell, L.-E., and Stigbrand, T. (1990) Experimental radioimmunotherapy of HeLa tumors in nude mice with131I-labeled monoclonal antibodies.Anticancer Res. 10, 379–384.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • A. Ullen
    • 1
  • K. Riklund Åhlström
    • 1
    • 2
  • R. Makiya
    • 1
  • T. Stigbrand
    • 1
  1. 1.Department of Immunology and Medical Biochemistry and BiophysicsUniversity of UmeaUmeåSweden
  2. 2.Department of Diagnostic RadiologyUniversity of UmeåUmeåSweden

Personalised recommendations