Advertisement

Biological Trace Element Research

, Volume 1, Issue 2, pp 131–140 | Cite as

Role in hemolysis of the interaction of tellurium compounds with glutathione

Comparison with the hemolysis produced by mercury compounds
  • Romano H. De Meio
  • Paul F. Doughty
Article
  • 33 Downloads

Abstract

We have shown that tellurite and tellurate require the interaction with reduced glutathione (GSH) to hemolyze human erythrocytes. The study of the nature of this interaction is the main object of this paper. The degree of hemolysis was determined by the method of Angelone. The addition of extracellular 1 mM GSH or cysteine increased the rate of hemolysis. Concanavalin A (0.3 mg/mL) and/or 4 mg/mL adenosine did not affect the hemolysis by 0.1 mM tellurite. One tenth to 1 mM 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonate (SITS) inhibited this hemolysis by 60–100%. Millimolar GSH released this inhibition. Incubation of 0.1 mM tellurite with 1 mM GSH for 90 min at 37°C, produced a hemolytic agent when prepared and tested under nitrogen, but one that was not active when prepared in air. The hemolysis byp-hydroxymercuribenzoate orp-hydroxymercuriphenylsulfonate did not involve GSH. Scanning electron micrographs showed a sphero-echinocyte transformation, in the pre-hemolytic stage, with all the agents tested. The rate of penetration of tellurite plays a role in determining the rate of hemolysis, as shown by the effect of SITS. The release by GSH of the inhibition by SITS poses questions concerning the site of action and cell membrane penetration of the hemolytic agent. Telluride or some intermediate in the interaction of GSH with tellurite is the actual hemolytic agent.

Key Words

Hemolysis, interaction of Te compounds with glutathione in tellurium compounds, and glutathione in hemolysis glutathione, and Te compounds in hemolysis mercury, compared to Te compounds in hemolysis 

References

  1. 1.
    R. Luzzatto,Arch. Fisiol. 8, 257 (1910).Google Scholar
  2. 2.
    R. H. De Meio, and R. T. Onischuk,J. Am. Osteopath. Assoc. 73, 653 (1974).PubMedGoogle Scholar
  3. 3.
    F. X. Blais, R. T. Onischuk, and R. H. De Meio,J. Am. Osteopath. Assoc. 72, 207 (1972).PubMedGoogle Scholar
  4. 4.
    R. H. De Meio,Fed. Proc. 32, 287 (1973).Google Scholar
  5. 5.
    R. H. De Meio and D. J. O’Leary,J. Am. Osteopath. Assoc. 74, 430 (1975).Google Scholar
  6. 6.
    W. F. Agnew, and J. T. Cheng,Toxicol. Appl. Pharmacol. 20, 346 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    H. S. Hsieh and H. E. Ganther,Biochim. Biophys. Acta 497, 205 (1977).PubMedGoogle Scholar
  8. 8.
    E. Angelone,Arch. Biochem. Biophys. 112, 288 (1965).CrossRefGoogle Scholar
  9. 9.
    E. Beutler, O. Duron, and B. M. Kelly,J. Lab. Clin. Med. 61, 882 (1963).PubMedGoogle Scholar
  10. 10.
    J. B. C. Findlay,J. Biol. Chem. 249, 4398 (1974).PubMedGoogle Scholar
  11. 11.
    J. M. Wolosin, H. Ginsburg, and Z. I. Cabantchik,J. Biol. Chem. 252, 2419 (1977).PubMedGoogle Scholar
  12. 12.
    J. A. Singer and M. Morrison,Biochim. Biophys. Acta 426, 123 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Maddy,Biochim. Biophys. Acta 88, 390 (1964).PubMedGoogle Scholar
  14. 14.
    Z. I. Cabantchik and A. Rothstein,J. Membrane Biol. 10, 311 (1972).CrossRefGoogle Scholar
  15. 15.
    A. T. Diplock, H. Baum, and J. A. Lucy,Biochem. J. 123, 721 (1971).PubMedGoogle Scholar
  16. 16.
    C. Crowley, J. D. Young, and E. M. Tucker,Biochem. Soc. Trans. 5, 1455 (1977).PubMedGoogle Scholar
  17. 17.
    M. Lee, A. Dong, and J. Yano,Can. J. Biochem. 47, 791 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1979

Authors and Affiliations

  • Romano H. De Meio
    • 1
  • Paul F. Doughty
    • 1
  1. 1.Department of BiochemistryPhiladelphia College of Osteopathic MedicinePhiladelphiaU.S.A.

Personalised recommendations