Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 31, Issue 5, pp 1086–1100 | Cite as

Multiperipheral scattering and singular Bethe-Salpeter equations

  • G. Cosenza
  • L. Sertorio
  • M. Toller
Article

Summary

The asymptotic absorptive scattering amplitude is investigated, in the framework of the multiperipheral model, for two cases in which the leading singularity is a cut and not a Regge pole. A general method is indicated for finding the positions of the cuts in the partialwave amplitudes in the complex angular-momentum plane. Relations between the functions representing the discontinuities of the amplitude along the cut and some generalized solutions of the Bethe-Salpeter equation aie shown.

Riassunto

Si studia l’andamento asintotico délia parte immaginaria dell’ampiezza di scattering, nell’approssimazione del modello multiperiferico, in due casi in cui la singolarità dominante non è un polo di Eegge ma un taglio. Si indica un metodo générale per trovare la posizione dei tagli dell’ampiezza in onda parziale nel piano del momento angolare complesso. Si trovano delle relazioni tra la funzione che rappresenta la discontinuità dell’ampiezza lungo il taglio e certe soluzioni generalizzate délia equazione di Bethe e Salpeter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Fubinj andR. Stroffolini:Lectures Delivered at the Seminar on Theoretical Physics (Trieste, 1962).Google Scholar
  2. (2).
    G. C. Wick:Phys. Rev.,96, 1124 (1954).MathSciNetADSCrossRefMATHGoogle Scholar
  3. (3).
    B. W. Lee andA. R. Swift:Nuovo Cimento,27, 1272 (1963)MathSciNetCrossRefMATHGoogle Scholar
  4. (4).
    A. Bastai, L. Bertocchi, G. Furlan andM. Tonin:Nuoro Cimento,30, 1532 (1963).MathSciNetCrossRefMATHGoogle Scholar
  5. (5).
    A. Bastai, L. Bertocchi, S. Fubuini, G. Furlan andM. Tonin:Nuovo Cimento,30, 1512 (1963).CrossRefMATHGoogle Scholar
  6. (6).
    R. Oehme:Lectures Delivered at the Scottish Summer School (1963).Google Scholar
  7. (7).
    R. F. Sawyer:Complex Angular Momentum in Perturbation Theory (preprint).Google Scholar
  8. (8).
    A. R. Swift andB. W. Lee:Phys. Rev.,131, 1857 (1963).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    L. Bertocchi, S. Fubini andM. Tonin:Nuovo Cimento,25, 626 (1962).CrossRefMATHGoogle Scholar
  10. (10).
    C. Ceolin, F. Duimio, R. Stroffolini andS. Fubini:Nuovo Cimento,26, 247 (1962).CrossRefGoogle Scholar
  11. (11).
    P. Surayi:On the Leading Singularity in the Angular Momentum Plane in Perturbation Theory (preprint).Google Scholar
  12. (12).
    A. Erdelyi, W. Magnus, F. Oberhettinger andF. G. Tricomi:Higher Transcendental Functions, Vol.2.Google Scholar
  13. (13).
    J. M. Jauch andF. Rohrlich:The Theory of Photons and Electrons, Appendix A 5.Google Scholar
  14. (14).
    E. C. Titchmaesh:Theory of Fourier Integrals, Chap. 3, Theorem 71.Google Scholar
  15. (15).
    D. Amati, S. Fubini andA. Stanghellini:Nuovo Cimento,26, 896 (1962).CrossRefGoogle Scholar
  16. (16).
    D. Amati, M. Cini andA. Stanghellini:Phys. Lett.,4, 270 (1963).ADSCrossRefGoogle Scholar
  17. (17).
    A. Erdelyi, W. Magnus, F. Oberhettinger andF. G. Tricomi:Higher Transcendental Functions, Vol. I, Chapt. 5.Google Scholar

Copyright information

© Società Italiana di Fisica 1964

Authors and Affiliations

  • G. Cosenza
    • 1
  • L. Sertorio
    • 2
  • M. Toller
    • 2
  1. 1.Scuola di Perfezionamento in Fisica NucleareRoma
  2. 2.Sezione di RomaIstituto Nazionale di Fisica NucleareItalia

Personalised recommendations