Folia Microbiologica

, Volume 34, Issue 3, pp 185–194 | Cite as

Production of acid and alkaline phosphatases byMyxococcus coralloides

  • F. González
  • J. Munoz
  • J. M. Arias
  • E. Montoya


Acid and alkaline phosphatase ofMyxococcus coralloides were examined during vegetative growth in a liquid medium. Two extracellular phosphatases and two cell-bound phosphatases, acid and alkaline in both cases, were produced. The phosphatase production was unaltered by the presence of high concentrations of inorganic phosphate. Both enzymes were produced constitutively. These two hydrolases were released into the growth medium during the exponential growth phase (approximately 10% of total activity). The production of these enzymes was modified by the presence of organic acids and metal ions in the medium.


Arsenate Alkaline Phosphatase Phosphatase Activity Alkaline Phosphatase Activity Phosphatase Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames B.N.: Assay of inorganic phosphate, total phosphate and phosphatases, pp. 115–118 inMethods in Enzymology, Vol. VIII (E.F. Neufeld, V. Ginsburg, eds.). Academic Press, New York-London 1966.Google Scholar
  2. Arias J.M., Montoya E.: Dispersed growth and cell lysis inMyxococcus coralloides.Microb. Lett.5, 81–84 (1978).Google Scholar
  3. Arias J. M., Fernández-Vivas A., Montoya E.: Evidence for an activating substance related to autolysis inMyxococcus coralloides.Arch. Microbiol.134, 164–166 (1983).CrossRefGoogle Scholar
  4. Arnold W.N., Garrison R.G.: An Fe3+-activated acid phosphatase inSaccharomyces rouxii.J. Biol. Chem.254, 4919–4924 (1979).PubMedGoogle Scholar
  5. Arnold W.N., Evans B.J., Denniston M.L.: Effects of metal-depleted media on the growth and morphology ofSaccharomyces rouxii and on the status of periplasmic acid phosphatase.J. Gen. Microbiol.129, 2351–2358 (1983).Google Scholar
  6. Coleman G.: Pleiotropic compensation in the regulation of extracellular protein formation by a low α-toxin producing variant ofStaphylococcus aureus (WOOD 46).J. Gen. Microbiol.122, 11–15 (1981).PubMedGoogle Scholar
  7. Cheng K.J., Costerton J.W.: Localization of alkaline phosphatase in three gram-negative rumen bacteria.J. Bacteriol.116, 424–440 (1973).PubMedGoogle Scholar
  8. Cheng K.J., Ingram J.M., Costerton J.W.: Alkaline phosphatase localization and sphaeroplast formation ofPseudomonas aeruginosa.Can. J. Microbiol.16, 1319–1324 (1970).PubMedGoogle Scholar
  9. Done J., Shorey C.O., Lake J.P., Pollak J.K.: The cytochemical localization of alkaline phosphatase inEscherichia coli.Biochem. J.69, 27c-28c (1965).Google Scholar
  10. Fernández-Vivas A., Arias J.M., Montoya E.: Autolysis inMyxococcus coralloides D.FEMS Microbiol. Lett.20, 97–101 (1983).CrossRefGoogle Scholar
  11. Franker C.K., Mcgee M.P., Rezzo T.P.: Alkaline phosphatase activity in a strain ofBacterionema matruchotii.J. Dental Res.58, 1705–1708 (1978).Google Scholar
  12. González F., Arias J.M., Montoya E.: Phosphatases activities in the life cycle ofMyxococcus coralloides D.J. Gen. Microbiol.133, 2327–2332 (1987).Google Scholar
  13. Gottesman S.: Bacterial regulation: Global regulatory networks.Ann. Rev. Gen.18, 415–441 (1984).CrossRefGoogle Scholar
  14. Hochberg M.L., Sargent M.L.: Regulation of repressible alkaline phosphatase by organic acids and metal ions inNeurospora crassa.Can. J. Microbiol.19, 1487–1492 (1973).PubMedCrossRefGoogle Scholar
  15. Mau-Haui K., Blumenthal H.J.: Absence of phosphatase repression by inorganic phosphate in some microorganism.Nature190, 29–31 (1961).CrossRefGoogle Scholar
  16. Nesmeyanova M.A., Motlokh O.B., Kolot M.N., Kulaev I.S.: Multiple forms of alkaline phosphatase fromEscherichia coli cells with repressed and derepressed biosynthesis of the enzyme.J. Bacteriol.146, 453–459 (1981).PubMedGoogle Scholar
  17. Nicaud J.M., Breton A., Younes G., Guespin-Michel J.: Mutants ofMycococcus xanthus impaired in protein secretion: an approach to study of a secretory mechanism.Appl. Microbiol. Biotechnol.20, 344–350 (1984).CrossRefGoogle Scholar
  18. Poirier T.P., Holt S.C.: Acid and alkaline phosphatases ofCapnocytophaga species: production and cytological localization of the enzymes.Can. J. Microbiol.29, 1350–1360 (1983).PubMedCrossRefGoogle Scholar
  19. Rosenberg E., Varon M.: Antibiotics and lytic enzymes, pp. 109–127 inMyxobacteria: Development and Cell Interactions (E. Rosenberg, ed.). Springer Verlag, New York 1984.Google Scholar
  20. Rosenberg E., Keller K.H., Dworjin M.: Cell density-dependent growth ofMycococcus xanthus on casein.J. Bacteriol.155, 770–779 (1977).Google Scholar
  21. Sedmak J., Grossberg S.: A rapid, sensitive and versatile assay for protein using coomassie brilliant blue G250.Anal. Biochem.79, 544–552 (1977).PubMedCrossRefGoogle Scholar
  22. Shah D.B., Blobel H.: Repressible alkaline phosphatase ofStaphylococcus aureus.J. Bacteriol.94, 780–781 (1967).PubMedGoogle Scholar
  23. Shimkets L.J.: Nutrition, metabolism and the initiation of development, pp. 91–107 inMyxobacteria: Development and Cell Interactions (E. Rosenberg, ed.). Springer-Verlag, New York 1984.Google Scholar
  24. Spencer D.B., Chai-Pao C., Hulett F.M.: Effect of cobalt on synthesis and activation ofBacillus licheniformis.J. Bacteriol.145, 926–933 (1981).PubMedGoogle Scholar
  25. Von Tigerstrom R.G.: Production of two phosphatases byLysobacter enzymogenes and purification and characterization of the extracellular enzymes.Appl. Environ. Microbiol.47, 693–698 (1984).Google Scholar
  26. Wilkins S.A.: Physiological factors in the regulation of alkaline phosphatase synthesis inEscherichia coli.J. Bacteriol.110, 616–623 (1972).PubMedGoogle Scholar
  27. Willsky G.R., Malamy M.H.: Effect of arsenate on inorganic phosphate transport inEscherichia coli.J. Bacteriol.144, 366–374 (1980).PubMedGoogle Scholar
  28. Willsky G.R., Bennett R.L., Malamy M.H.: Inorganic phosphate transport inEscherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation.J. Bacteriol.113, 529–539 (1973).PubMedGoogle Scholar
  29. Witkin S., Rosenberg E.: Induction of morphogenesis by methionine starvation inMycococcus xanthus: Polyamine control.J. Bacteriol.103, 641–649 (1970).PubMedGoogle Scholar

Copyright information

© ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • F. González
    • 1
  • J. Munoz
    • 1
  • J. M. Arias
    • 1
  • E. Montoya
    • 1
  1. 1.Departmento de Microbiologia, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations