Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 108, Issue 12, pp 1477–1507 | Cite as

«Leading» physics at LHC including machine studies plus detector R&D (LAA)

  • T. Taylor
  • H. Wenninger
  • A. Zichichi
Article

Summary

It is proposed to improve the acceptance for leading-proton detection (LPD) at LHC by at least an order of magnitude. A direct application of this LPD technology is its use as a leading-proton missing-mass spectrometer (LPMMS) with very high mass-resolution power. This allows the search for massive states (including Higgs) produced in association with two leading protons, without any need to know their decay channels. The coupling of the LPD technology with other very forward detectors for muons plus EM & Hadronic calorimetry, in addition to an existing upgraded set-up, will allow a study of the «Leading Effect» and of its consequences in a wide range of high-energy QCD phenomena, including non-perturbative effects. This physics programme is complementary to what has been studied so far for the LHC.

PACS 29.90

Other topics in elementary-particle and nuclear physics experimental methods and instrumentation 

PACS 07.75

Mass spectrometers and related techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jarskolg G. andRein D. (Editors),Proceedings of the ECFALarge Hadron Collider Workshop, Aachen, 4–9 October 1990, CERN 90-10, 3 December 1990.Google Scholar
  2. [2]
    Perin R.,Status of the LHCProgramme and magnet development, preprint CERN-AT/94-41 (1994).Google Scholar
  3. [3]
    Brianti G.,Layout of the LHC:position and properties of collisions and other insertions, preprint CERN-AC/94-03 (1994).Google Scholar
  4. [4]
    Fabjan C.W., LHC:physics, machine, experiments, preprint CERN-PPE/95-25 (1995).Google Scholar
  5. [5]
    Basile M. et al.:What we can learn from high-energy (pp)interactions, inThe Unity of the Fundamental Interactions (Plenum Press, New York, N.Y.) 1983, p. 695.CrossRefGoogle Scholar
  6. [6]
    Basile M. et al.:Nuovo Cimento A,79 (1983) 1.CrossRefADSGoogle Scholar
  7. [7]
    Basile M. et al.:The end of a myth: high-p t physics, inQuarks, Leptons, and their Constituents (Plenum Press, New York, N.Y.) 1988.Google Scholar
  8. [8]
    For a review seeZichichi A,Universality properties in non-perturbative QCD, inOld and New Forces of Nature (Plenum Press, New York, N.Y.) 1989, p. 117, and references quoted therein.Google Scholar
  9. [9]
    Bonvicini G. et al.:Lett. Nuovo Cimento,37 (1983) 289.CrossRefGoogle Scholar
  10. [10]
    Basile M. et al., Lett. Nuovo Cimento,38 (1983) 359.CrossRefGoogle Scholar
  11. [11]
    Basile M. et al., Lett. Nuovo Cimento,36 (1983) 303.CrossRefGoogle Scholar
  12. [12]
    Basile M. et al., Lett. Nuovo Cimento,38 (1983) 367.CrossRefGoogle Scholar
  13. [13]
    Bonvicini G. et al.:Lett. Nuovo Cimento,36 (1983) 555.CrossRefGoogle Scholar
  14. [14]
    Basile M. et al., Lett. Nuovo Cimento,41 (1984) 293.CrossRefGoogle Scholar
  15. [15]
    Basile M. et al., Lett. Nuovo Cimento,41 (1984) 298.CrossRefGoogle Scholar
  16. [16]
    Anselmo, F., Cifarelli L., Eskut E andShabelski Yu. M.,Nuovo Cimento A,105 (1992) 1371.CrossRefADSGoogle Scholar
  17. [17]
    Anselmo F. et al., The Monte Carlo simulation laboratory (MSL)of LAA, preprint CERN/DRDC/92-44, 3 September 1992.Google Scholar
  18. [18]
    Ellis J. andNanopoulos D. V.,Higgs production in pomeron-pomeron collisions at LHC, CERN-TH internal note, June 1995.Google Scholar
  19. [19]
    Scandale W. et al., The lattice of the CERN large hadron collider, presented at theUS Particle Accelerator Conference, Dallas, USA, 1–5 May 1995 Google Scholar
  20. [20]
    Design study of the Large Hadron Collider (LHC), CERN 91-03 (1991), p. 77.Google Scholar
  21. [21]
    Anzivino G.,et al., Design and constructions of the ZEUSleading proton spectrometer, to be submitted toNucl. Instrum. Methods A.Google Scholar
  22. [22]
    ZEUS Collaboration (E. Bernardi et al.),Nucl. Instrum. Methods A,262 (1987) 229.CrossRefGoogle Scholar
  23. [23]
    Hartjes F. G. et al.:Nucl. Instrum. Methods A,277 (1989) 379.CrossRefADSGoogle Scholar
  24. [24]
    DeSalvo R. et al.:Nucl. Instrum. Methods A,279 (1989) 467.CrossRefADSGoogle Scholar
  25. [25]
    Acosta D. et al.:Nucl. Instrum. Methods A,294 (1990) 193.CrossRefADSMATHGoogle Scholar
  26. [26]
    Bencheickh B. et al., Nucl. Instrum. Methods A,315 (1992) 355.ADSGoogle Scholar
  27. [27]
    Acosta D. et al., Nucl. Instrum. Methods A,308 (1991) 481.CrossRefADSGoogle Scholar
  28. [28]
    Contin A. et al., Nucl. Instrum. Methods A,315 (1992) 345.ADSGoogle Scholar
  29. [29]
    Acosta D. et al., Nucl. Instrum. Methods A,305 (1991) 55.CrossRefADSGoogle Scholar
  30. [30]
    Acosta D. et al., Nucl. Instrum. Methods A,316(1992) 185.ADSGoogle Scholar
  31. [31]
    Acosta D. et al., Nucl. Instrum. Methods A,314 (1992) 431.CrossRefADSGoogle Scholar
  32. [32]
    Acosta D. et al., Nucl. Instrum. Methods A,320 (1992) 128.CrossRefADSGoogle Scholar
  33. [33]
    Acosta D. et al., Nucl. Instrum. Methods A,309 (1991) 143.CrossRefADSGoogle Scholar
  34. [34]
    Acosta D. et al., Nucl. Instrum. Methods A,302 (1991) 36.CrossRefADSGoogle Scholar
  35. [35]
    Acosta D. et al., Nucl. Instrum. Methods B,62 (1991) 116.CrossRefADSGoogle Scholar
  36. [36]
    Anzivino G. et al., Radiat. Phys. Chem.,41 (1992) 283.CrossRefADSGoogle Scholar
  37. [37]
    Anzivino G. et al., Nucl. Instrum. Methods A,346 (1994) 153.CrossRefADSGoogle Scholar
  38. [38]
    Anzivino G. et al., Nucl. Instrum. Methods A,357 (1995) 350.CrossRefADSGoogle Scholar
  39. [39]
    Bouclier R. et al., Nucl. Instrum. Methods A,267 (1988) 69.CrossRefADSGoogle Scholar
  40. [40]
    Charpak G., Peskov V., Sauli F. andScigocki D., CERN EP Internal Report 88-02 (1988).Google Scholar
  41. [41]
    Peskov V., Charpak G., Sauli F. andScigocki D.,Nucl. Instrum. Methods A,283 (1989) 786.CrossRefADSGoogle Scholar
  42. [42]
    Peskov V. et al., Nucl. Instrum. Methods A,269 (1988) 149.CrossRefADSGoogle Scholar
  43. [43]
    Charpak G. et al., Proceedings of the International Workshop on Liquid-State Electronics, Berlin, 1988 (Hahn-Meitner-Institut, Berlin) 1988, p. 85.Google Scholar
  44. [44]
    Astruc D et al., Proceedings of the International Workshop on Liquid-State Electronics, Berlin, 1988 (Hahn-Meitner-Institut, Berlin) 1988, p. 109.Google Scholar
  45. [45]
    Ypsilantis T.,Proceedings of ECFAStudy Week on Instrumentation Technology for High-Luminosity Hadron Colliders, Barcelona, 1989, Vol.2 (CERN 89 10, ECFA 89 124, Geneve) 1989, p. 661.Google Scholar
  46. [46]
    Peskov V., Charpak G., Dominik W. andSauli F.,Nucl. Instrum. Methods A,277 (1989) 547.CrossRefADSGoogle Scholar
  47. [47]
    Charpak G. et al., Proceedings of the Symposium on Particle Identification at High Luminosity Hadron Colliders, Batavia, 1989, edited byT. J. Gourlay andJ. G. Morgin (Fermilab, Batavia) 1990, p. 295.Google Scholar
  48. [48]
    Peskov V. et al., Nucl. Instrum. Methods A,283 (1989) 786.CrossRefADSGoogle Scholar
  49. [49]
    Charpak G. et al., New developments in calorimetry based on VUVscintillators coupled to photosensitive gaseous detectors, preprint CERN-EP/90-41, 1990.Google Scholar
  50. [50]
    Charpak G. et al., ECFALarge Hadron Collider Workshop, Aachen, Germany, 4–9 October 1990, CERN 90-10, Vol. III, p. 385.Google Scholar
  51. [51]
    Charpak G. et al.:Proceedings of the X International Conference on Conductivity and Breakdown in Dielectric Liquids, Grenoble, 1990, edited byP. Atten andR. Tobazeon (Lab. d'Electrostatique et Matériaux Diélectriques, CNRS and Univ. Joseph Fourier, Grenoble) 1990, p. 131.Google Scholar
  52. [52]
    Charpak G. et al., Investigation of operation of a parallel-plate avalanche chamber with a CsIphotocathode under high gain conditions, preprint CERN PPE/91-47 (1991).Google Scholar
  53. [53]
    For a review seeZichichi A.,The main achievements of the LAAproject, inPhysics up to 200 TeV (Plenum Press, New York, N.Y.) 1991, p. 327; and see alsoAnzivino G. et al., Riv. Nuovo Cimento,13, No. 5 (1990);Acosta D. et al., Riv Nuovo Cimento,13, No. 10-11 (1990).CrossRefGoogle Scholar
  54. [54]
    Seguinot J., Passardi G., Tischhauser J. andYpsilantis T.,Nucl. Instrum. Method A,323 (1992) 583.CrossRefADSGoogle Scholar
  55. [55]
    Seguinot J., Tischhauser J. andYpsilantis T.,Measurement of UVlight absorption with photon energy and its stability for high resolution EM calorimenters, to be published inNucl. Instrum. Methods.Google Scholar
  56. [56]
    Grosdidier B., thesis, University Louis Pasteur, Strasbourg, 1992.Google Scholar
  57. [57]
    Lazic D., thesis, University Louis Pasteur, Strasbourg, 1993.Google Scholar
  58. [58]
    Gorodetsky P., Grosdidier B. andLazic D., inRadiation Physics and Chemistry, edited byR. Clough andK. F. Johnson (Pergamon Press, Oxford, UK) 41 nos. 1/2 (1993), p. 253.Google Scholar
  59. [59]
    Anzivino G. et al., Proceedings of the IV International Conference on Calorimetry in High Energy Physics, Isola d'Elba, Italy, 1993, p. 433.Google Scholar
  60. [60]
    Anzivino G. et al., Proceedings of the IV International Conference on Calorimetry in High Energy Physics, Isola d'Elba, Italy, 1993, p. 438.Google Scholar
  61. [61]
    Anzivino G. et al., Proceedings of the IV International Conference on Calorimetry in High Energy Physics, Isola d'Elba, Italy, 1993, p. 462.Google Scholar
  62. [62]
    Contin A.et al., R&D proposal: development of quartz fiber calorimetry, CERN DRDC/94-4, DRDC/P-54, 5 January 1955.Google Scholar
  63. [63]
    Anzivino G. et al., Angular dependence of quartz fiber calorimenter response, to be published inProceedings of the VI Pisa Meeting on Advanced Detectors, Isola d'Elba, Italy, 1995.Google Scholar
  64. [64]
    Anzivino G. et al., Nucl. Instrum. Methods A,357 (1995) 380.CrossRefADSGoogle Scholar
  65. [65]
    Anzivino G. et al., Nucl. Instrum. Methods A,357 (1995) 369.CrossRefADSGoogle Scholar
  66. [66]
    Contin A. et al., Quartz fiber calorimetry, to be published inNucl. Instrum. Methods A (1995).Google Scholar
  67. [67]
    Schönbacher H.,Materials in the radiation environment of high luminosity colliders, inProceedings of the XIX and XXV Workshops of the INFNEloisatron Project «Supercolliders and Superdetectors», edited byW. A. Barletta andH. Leutz (World Scientific, Singapore) 1993, p. 327.Google Scholar
  68. [68]
    Schönbacher H. andWul F.,Radiation hardness studies for LHCdetector materials, inProceedings of ECFALarge Hadron Collider Workshop, Aachen, Germany, 4–9 October 1990, edited byG. Jarlskog andD. Rein, Vol.1, p. 289, Vol.3, p. 566 and preprint CERN/LAA-RA/90-016, 30 October 1990.Google Scholar
  69. [69]
    Leon Florian M. E., Schönbacher H. andTavlet M.,Facilities and dosimetry for detector material irradiations, inProceedings of the XX Workshop of the INFNEloisatron Project, edited byC. Del Papa,P. G. Pelfer andK. Smith (World Scientific, Singapore) 1992, p. 145 and preprint CERN/LAA/RA/92-006, 15 April 1992.Google Scholar
  70. [70]
    Larsen H., Massam T., Schönbacher H. andWulf, F.,Radiation test on service electronics for future multiTEVdetectors report CERN 93-04, 12 October 1993.Google Scholar
  71. [71]
    Bock R. K. et al., Nucl. Instrum. Methods A,289 (1990) 534.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • T. Taylor
    • 1
  • H. Wenninger
    • 1
  • A. Zichichi
    • 1
  1. 1.CERNGeneve 23Switzerland

Personalised recommendations