Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 49, Issue 3, pp 467–478 | Cite as

The concept of antiparticles in particle mixing

  • S. H. Patil
  • Y. Tomozawa
  • York-Peng Yao
Article
  • 22 Downloads

Summary

We start from the definition that the unstable physical particles are eigenstates of the mixing matrices and consider their relation to the physical antiparticles. When there isCP invariance, the physical antiparticles are theCP-conjugate states of the physical particles. In particular, we show that K 1 0 and K 2 0 behave as particles at all times and to all orders of interactions, irrespectively of the exponential decay law. WhenCP is violated, the question whether the physical antiparticles are theCPT-conjugates of the physical particles is raised. In\(K - \bar K^0 \) system, such a requirement leads to normality of the mixing matrix. However, in ΛΣ0 mixing, this requirement cannot be satisfied, so that in general the antiparticle states cannot be obtained from the particle states byCPT conjugation.

Keywords

Mass Matrix Physical Particle Unstable Particle Unperturbed State Relativistic Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Понятие античастиц при смешивании частиц

Резюме

Мы исходим из определения, что нестабильные физические частицы являются собственными состояниями матриц смешивания, и рассматриваем их связь с физическими античастицами. Если сираведливаCP инвартность, то физические античастицы представляютCP-сопряженные состояния физических уастиц. В частности, мы показываем, что K 1 0 и K 2 0 ведут себя как частицы все время и во всех порядках взаимодействий, независимо от зкспоненциального закона распада. КогдаCP нарушается, возникает вопрос являются ли физические античастицыCPT-сопряженными состояниями физических частиц. В системе\(K - \bar K^0 \) такое требование ведет к нормированию матрицы смешивания. Однако, при смешивании Λ-Σ0 требование не удовлетворяется, так что, в обшем случае, античастичные состояния не могут быть получены из частичных состояний с помошьюCPT-сопряжения.

Riassunto

Si parte dalla definizione delle particelle fisiche instabili come autostati delle matrici di mescolanza e si considera la loro relazione con le antiparticelle fisiche. Quando si ha invarianza rispetto aCP, le antiparticelle fisiche. In particolare si dimostra che K 1 0 e K 2 0 si comportano come particelle sempre e in ogni ordine di interazione, senza riguardo alle leggi di decadimento esponenziale. Se laCP è violata, sorge la questione se le antiparticelle fisiche sono coniugate rispetto alCPT delle particelle fisiche. Nel sisema\(K - \bar K^0 \) questa condizione porta alla normalità della matrice di mescolanza. Però nella mescolanza Λ-Σ0 questa condizione non può essere soddisfatta, cosicchè in generale gli stati di antiparticella non possono essere ottenuti dagli stati di particella per coniugazione rispetto alCPT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    V. F. Weisskopf andE. P. Wigner:Zeits. Phys.,63, 54 (1930);65, 18 (1930).ADSCrossRefGoogle Scholar
  2. (2).
    ω-ϕ mixing due toSU 3-breaking interaction also falls into this category. However, the problem here is complicated by the fact that the unperturbed states are already unstable.Google Scholar
  3. (3).
    This question was first raised byH. J. Borchers: private communication. Recently this question has also been considered for the\(K^0 \overline K ^0 \) system byV. S. Mathur (Rochester preprint, 1966).Google Scholar
  4. (4).
    A matrix is normal when its Hermitian part commutes with the anti-Hermitian part.Google Scholar
  5. (5).
    S. H. Patil, Y. Tomozawa andY.-P. Yao:Phys. Rev.,142, 1041 (1966).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    T. D. Lee, R. Oehme andC. N. Yang:Phys. Rev.,106, 340 (1957).ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    The exponential solutions we have used above are good for the time range for which (l/μt e t/r is small, where μ is of the order of the pion mass, and τ is the smallest of the lifetimes of physical particles. This limitation is present for the decay of a single unstable particle also (i.e., with no mixing) and outside this range the deviations from exponential decay will become important. Thus for example at very larget, the dominant behavior will be a power law as has been discussed byGoldberger andWatson (Collision Theory, New York, 1964).Google Scholar
  8. (8).
    R. Jost:Helv. Phys. Acta,30, 409 (1957).MathSciNetGoogle Scholar
  9. (10).
    G. Lüders andB. Zumino:Phys. Rev.,110, 1450 (1958).ADSMathSciNetCrossRefGoogle Scholar
  10. (11).
    E.g.,G. Lüders: inLectures on Field Theory and the Many-Body Problem, Edited byE. R. Caianiello (New York), 1961);R. F. Streater andA. S. Wightman:PCT, Spin and Statistics, and All That (New York, 1964).Google Scholar
  11. (13).
    T. Bowen:Phys. Rev. Lett.,16, 112 (1966).ADSCrossRefGoogle Scholar
  12. (15).
    J. Schwinger:Phys. Rev.,82, 914 (1951).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1967

Authors and Affiliations

  • S. H. Patil
    • 1
  • Y. Tomozawa
    • 1
  • York-Peng Yao
    • 1
  1. 1.The Institute for Advanced StudyPrinceton

Personalised recommendations