Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 56, Issue 1, pp 207–217 | Cite as

A sum rule for the pion electromagnetic form factor

  • F. Nicolò
  • G. C. Rossi
Article

Summary

A method for obtaining a sum rule for the pion electromagnetic form factor is proposed. Numerical evaluations giveFπ(k2)∼F 1 v (k2). Some results about residues of the pion trajectory att=m π 2 for everyk2 are also obtained in the evasive and in the conspiratorial case.

Keywords

Electromagnetic Form Factor Pion Form Factor Charge Form Factor Proton Form Factor Parity Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Правило сумм для электромагнитного форм-фактора пионов

Резюме

Предлагается метод получения правила сумм для электромагнитного форм-фактора пионов. Численные вычисления дают.Fπ(k2)∼F 1 v (k2). В «конспиративном» и «неуловимом» случаях также получены некоторые результаты относительно вычета для траетории пиона приt=m π 2 для каждогоk2.

Riassunto

Si propone un metodo per ottenere una regola di somma per il fattore di forma elettromagnetico del pione. Numericamente si ottieneFπ(k2)∼F 1 v (k2). Si ricavano inoltre alcuni risultati sui residui della traiettoria del pione at=m π 2 e per ognik2, nel caso di evasione e nel caso di cospirazione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Fubini:Nuovo Cimento,52 A, 224 (1967).ADSCrossRefGoogle Scholar
  2. (2).
    J. S. Ball andM. Jacob:Photoproduction and Regge behaviour, CERN preprint TH. 825.Google Scholar
  3. (4).
    I. S. Gerstein:Phys. Rev.,161, 1631 (1967).ADSCrossRefGoogle Scholar
  4. (5).
    V. De Alfaro, S. Fubini, G. Furlan andC. Rossetti:Superconvergence and current algebra, preprint Istituto di Fisica dell’Università di Torino.Google Scholar
  5. (7).
    N. N. Khuri:Phys. Rev.,132, 914 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. (8).
    N. Mukunda andT. Rhada:Nuovo Cimento,44 A, 726 (1966).ADSCrossRefGoogle Scholar
  7. (10).
    R. Zagury:Phys. Rev.,145, 1112 (1966).ADSCrossRefGoogle Scholar
  8. (11).
    For experimental data on <r π2> see:C. de Vries, R. Hofstadter, A. Johansson andR. Herman:Phys. Rev.,134, B 848 (1964): they give for √<r N2> the two values 0.81 and 0.77 fm. For the ones on <r π2> seeK. Berkelmann,et al.: Measurement of the pion form factor, Internal Report of the Laboratory of Nuclear Studies, Cornell University, Ithaca, N.Y. He has found that within the errors the pion and proton charge form factors are identical and that the root-mean-square radius of the pion is √<r π2> = (0.80 ± 0.10) fm.ADSCrossRefGoogle Scholar
  9. (12).
    R. Dolen, D. Horn andC. Schmid:Finite energy sum rules and their application to π N charge exchange, preprint Calt 68-143.Google Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • F. Nicolò
    • 1
  • G. C. Rossi
    • 2
  1. 1.Istituto di Fisica dell’ UniversitàRoma
  2. 2.Laboratori Nazionali del CNENFrascati (Roma)

Personalised recommendations