Skip to main content
Log in

Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetP cn,k denote the set of all polynomials of degree at mostn withcomplex coefficients and with at mostk(0≤k≤n) zeros in the open unit disk. Let denote the set denote the set of all polynomials of degree at mostn withreal coefficients and with at mostk(0≤k≤n) zeros in the open unit disk. Associated with0≤k≤n andx∈[−1, 1], let

$$B_{n,k,x}^* : = \max \{ \sqrt {\frac{{n(k + 1)}}{{1 - x^2 }}} ,n\log (\frac{e}{{1 - x^2 }}\} ,B_{n,k,x}^* : = \sqrt {\frac{{n(k + 1)}}{{1 - x^2 }}} ,$$

, andM *n,k ≔max{n(k+1),nlogn},M n,k ≔n(k+1). It is shown that

$$M_{n,k}^* : = \max \{ n(k + 1),n\log n\} ,M_{n,k}^* :n(k + 1)$$

for everyx∈[−1, 1], wherec 1>0 andc 2>0 are absolute constants. Here ‖·‖[−1,1] denotes the supremum norm on [−1,1]. This result should be compared with the inequalities

$$c3\min \{ B_{n,k,x,} B_{n,,k,} \} \leqslant _{p \in P_{n,k} }^{\sup } \frac{{|p'(x)|}}{{||p||[1,1]}} \leqslant \{ B_{n,k,x,} B_{n,,k,} \} ,$$

, for everyx∈[−1,1], wherec 3>0 andc 4>0 are absolute constants. The upper bound of this second result is also fairly recent; and it may be surprising that there is a significant difference between the real and complex cases as far as Markov-Bernstein type inequalities are concerned. The lower bound of the second result is proved in this paper. It is the final piece in a long series of papers on this topic by a number of authors starting with Erdös in 1940.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. BernsteinCollected Works: Vol. I,Constructive Theory of Functions (1905–1930), Atomic Energy Commision, Springfield, VA, 1958 (English Translation).

    Google Scholar 

  2. R. P. Boas,Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  3. P. B. Borwein,Markov's inequality for polynomials with real zeros, Proc. Amer. Math. Soc.93 (1985), 43–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. B. Borwein and T. Erdélyi,Remez-, Nikolskii- and Markov-type inequalities for generalized nonnegative polynomials with restricted zeros, Constr. Approx.8 (1992), 343–362.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. B. Borwein and T. Erdélyi,Sharp Markov-Bernstein type inequalities for classes of polynomials with restricted zeros, Constr. Approx.10 (1994), 411–425.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. B. Borwein and T. Erdélyi,Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  7. P. B. Borwein and T. Erdélyi,Markov and Bernstein type inequalities in L p for classes of polynomials with constraints, J. London Math. Soc.51 (1995), 573–588.

    MATH  MathSciNet  Google Scholar 

  8. E. W. Cheney,Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  9. R. A. DeVore and G. G. Lorentz,Constructive Approximation, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  10. R. J. Duffin and A. C. Scheaffer,A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc.50 (1941), 517–528.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Erdélyi,Pointwise estimates for derivatives of polynomials with restricted zeros, inHaar Memorial Conference (J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1987, pp. 329–343.

    Google Scholar 

  12. T. Erdélyi,Pointwise estimates for the derivatives of a polynomial with real zeros, Acta Math. Hungar.49 (1987), 219–235.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Erdélyi,Markov type estimates for derivatives of polynomials of special type, Acta Math. Hungar.51 (1988), 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Erdélyi,Bernstein-type inequalities for the derivative of constrained polynomials, Proc. Amer. Math. Soc.112 (1991), 829–838.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Erdélyi,Markov-type inequalities for constrained polynomials with complex coefficients, manuscript.

  16. T. Erdélyi and J. Szabados,Bernstein-type inequalities for a class of polynomials, Acta Math. Hungar.52 (1989), 237–251.

    Article  Google Scholar 

  17. P. Erdös,On extremal properties of the derivatives of polynomials, Ann. of Math. (2)2 (1940), 310–313.

    Article  Google Scholar 

  18. M. von Golitschek and G. G. Lorentz,Bernstein inequalities in L p, 0<p≤∞, Rocky Mountain J. Math.19 (1989), 145–156.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. G. Lorentz,The degree of approximation by polynomials with positive coefficients, Math. Ann.151 (1963), 239–251.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. G. Lorentz,Approximation of Functions, 2nd ed., Chelsea, New York, 1986.

    MATH  Google Scholar 

  21. G. G. Lorentz, M. von Golitschek and Y. Makovoz,Constructive Approximation: Advanced Problems, Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  22. A. A. Markov,Sur une question posée par D.I. Mendeleieff, Izv. Acad. Nauk St. Petersburg62 (1889), 1–24.

    Google Scholar 

  23. V. A. Markov,Über Polynome die in einen gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann.77 (1916), 213–258; the original appeared in Russian in 1892.

    Article  MathSciNet  Google Scholar 

  24. A. Máté,Inequalities for derivatives of polynomials with restricted zeros, Proc. Amer. Math. Soc.88 (1981), 221–224.

    Article  Google Scholar 

  25. A. Máté and P. Nevai,Bernstein inequality in L p for 0<p<1, and (C, 1) bounds of orthogonal polynomials, Ann. of Math. (2)111 (1980), 145–154.

    Article  MathSciNet  Google Scholar 

  26. G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias,Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  27. I. P. Natanson,Constructive Function Theory, Vol. 1, Frederick Ungar, New York, 1964.

    MATH  Google Scholar 

  28. P. Nevai,Bernstein's inequality in L p, 0<p<1, J. Approx. Theory27 (1979), 239–243.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. J. Newman,Derivative bounds for Müntz polynomials, J. Approx. Theory18 (1976), 360–362.

    Article  MATH  Google Scholar 

  30. Q. I. Rahman and G. Schmeisser,Les Inégalités de Markoff et de Bernstein, Les Presses de L'Université de Montreal, 1983.

  31. A. C. Schaeffer and R. J. Duffin,On some inequalities of S. Bernstein and V. Markoff for derivatives of polynomials, Bull. Amer. Math. Soc.44 (1938), 289–297.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. T. Scheick,Inequalities for derivatives of polynomials of special type, J. Approx. Theory6 (1972), 354–358.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Szabados,Bernstein and Markov type estimates for the derivative of a polynomial with real zeros, inFunctional Analysis and Approximation, Birkhäuser, Basel, 1981, pp. 177–188.

    Google Scholar 

  34. J. Szabados and A. K. Varma,Inequalities for derivatives of polynomials having real zeros, inApproximation Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 881–888.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research is supported, in part, by the National Science Foundation of the USA under grant No. DMS-9623156 and conducted while an International Postdoctoral Fellow of the Danish Research Council at University of Copenhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdélyi, T. Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients. J. Anal. Math. 74, 165–181 (1998). https://doi.org/10.1007/BF02819449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02819449

Keywords

Navigation