Journal d’Analyse Mathématique

, Volume 74, Issue 1, pp 67–97 | Cite as

Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces

  • Nicola Garofalo
  • Duy-Minh Nhieu


Vector Field Sobolev Space Heisenberg Group LIPSCHITZ Continuity Harnack Inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Bellaïche,Sub-Riemannian Geometry, Birkhäuser, Boston, 1996.MATHGoogle Scholar
  2. [2]
    L. Capogna, D. Danielli and N. Garofalo,An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations18 (1993), 1765–1794.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    L. Capogna, D. Danielli and N. Garofalo,Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math.118 (1996), 1153–1196.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    L. Capogna and N. Garofalo,NTA domains for Carnot-Carathéodory metrics and a Fatou type theorem, preprint, 1995.Google Scholar
  5. [5]
    W. L. Chow,Uber System von linearen partiellen Differentialgleichungen erster Ordnug, Math. Ann.117 (1939), 98–105.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Christ,The extension problem for certain function spaces involving fractional orders of differentiability, Ark. Mat.22 (1984), 63–81.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. K. Chua,Extension theorems on weighted sobolev spaces, Indiana Univ. Math. J.4 (1992), 1027–1076.CrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Coifman and G. Weiss,Analyse harmonique non-commutative sur certains espaces homogenes, Springer-Verlag, Berlin, 1971.MATHGoogle Scholar
  9. [9]
    D. Danielli,Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana Univ. Math. J.44 (1995), 269–286.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Danielli,A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, preprint.Google Scholar
  11. [11]
    D. Danielli, N. Garofalo and D. M. Nhieu,Trace inequalities for Carnot-Carathéodory spaces and applications to quasilinear subelliptic equations, preprint.Google Scholar
  12. [12]
    J. Deny and J. L. Lions,Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble)5 (1953), 305–370.MathSciNetGoogle Scholar
  13. [13]
    L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.MATHGoogle Scholar
  14. [4]
    C. Fefferman and D. H. Phong,Subelliptic eigenvalue problems, inProceedings of the Conference in Harmonic Analysis in Honor of A. Zygmund, Wadsworth Math. Ser., Belmont, CA, 1981, pp. 530–606.Google Scholar
  15. [15]
    C. Fefferman and A. Sanchez-Calle,Fundamental solutions for second order subelliptic operators, Ann. of Math. (2)124 (1986), 247–272.CrossRefMathSciNetGoogle Scholar
  16. [16]
    G. B. Folland and E. M. Stein,Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.Google Scholar
  17. [17]
    B. Franchi and E. Lanconelli,Une metrique associée à une classe d’operateurs elliptiques degénérés, inProceedings of the Meeting “Linear Partial and Pseudo Differential Operators”, Rend. Sem. Mat. Univ. Politec. Torino, 1982.Google Scholar
  18. [18]
    B. Franchi and E. Lanconelli,Hölder regularity theorem for a class of linear non uniform elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa10 (1983), 523–541.MATHMathSciNetGoogle Scholar
  19. [19]
    B. Franchi and E. Lanconelli,Une condition géométrique pour l'inégalité de Harnack, J. Math. Pures Appl.64 (1985), 237–256.MATHMathSciNetGoogle Scholar
  20. [20]
    B. Franchi, R. Serapioni and F. Serra Cassano,Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math.22 (1996), 859–890.MATHMathSciNetGoogle Scholar
  21. [21]
    B. Franchi, R. Serapioni and F. Serra Cassano,Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7)11 (1997), 83–117.MATHMathSciNetGoogle Scholar
  22. [22]
    K. O. Friedrichs,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.55 (1944), 132–151.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    N. Garofalo,Recent Developments in the Theory of Subelliptic Equations and Its Geometric Aspects, Birkhäuser, Boston, to appear.Google Scholar
  24. [24]
    N. Garofalo and D. M. Nhieu,Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.49 (1996), 1081–1144.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    W. Hansen and H. Huber,The Dirichlet problem for sublaplacians on nilpotent groups—Geometric criteria for regularity, Math. Ann.246 (1984), 537–547.Google Scholar
  26. [26]
    P. Hartman,Ordinary Differential Equations, Birkhäuser, Boston, 1982.MATHGoogle Scholar
  27. [27]
    E. Hille,Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1968.Google Scholar
  28. [28]
    L. Hörmander,Hypoelliptic second-order differential equations, Acta Math.119 (1967), 147–171.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    D. Jerison,The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J.53 (1986), 503–523.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    D. Jerison and C. E. Kenig,Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math.46 (1982), 80–147.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    P. W. Jones,Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math.147 (1981), 71–88.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    G. Lu,Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat.40 (1996), 301–329.MATHMathSciNetGoogle Scholar
  33. [33]
    O. Martio and J. Sarvas,Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I4 (1979), 384–401.MathSciNetGoogle Scholar
  34. [34]
    N. Meyers and J. Serrin,H=W, Proc. Nat. Acad. Sci. U.S.A.51 (1964), 1055–1056.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    C. B. Morrey Jr.,Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.MATHGoogle Scholar
  36. [36]
    A. Nagel, E. M. Stein and S. Wainger,Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103–147.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    D. M. Nhieu,The extension problem for Sobolev spaces on the Heisenberg group, Ph.D Thesis, Purdue University, 1996.Google Scholar
  38. [38]
    O. A. Oleinik and E. V. Radkevich,Second order equations with non-negative characteristic form, inMathematical Analysis 1969, Itogi Nauki, Moscow, 1971 [Russian]; English translation: Amer. Math. Soc., Providence, R.I., 1973.Google Scholar
  39. [39]
    R. S. Phillips and L. Sarason,Elliptic-parabolic equations of the second order, J. Math. Mech.17 (1967/8), 891–917.MathSciNetGoogle Scholar
  40. [40]
    L. Saloff-Coste,A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N.2 (1992), 27–38.MathSciNetGoogle Scholar
  41. [4]
    N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon,Analysis and Geometry on Groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, 1992.Google Scholar
  42. [42]
    S. K. Vodop'yanov and A. V. Greshnov,On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric, Siberian Math. J. 36,5 (1995), 873–901.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1998

Authors and Affiliations

  • Nicola Garofalo
    • 1
    • 2
  • Duy-Minh Nhieu
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Dipartimento di Metodi e Modelli MatematiciPadovaItaly

Personalised recommendations