Advertisement

Metallurgical Transactions

, Volume 1, Issue 1, pp 9–18 | Cite as

Spheroidization of binary Fe-C alloys over a range of temperatures

  • K. M. Vedula
  • R. W. Heckel
Article
  • 188 Downloads

Abstract

The spheroidization of cementite in binary Fe-C alloys, 0.24, 0.42, and 0.79 wt pct C, was investigated over a range of temperatures, 594°, 649°, and 704°C, for times up to about 106 sec. Quantitative metallography techniques were used to obtain the following microstructural data on the cementite particles: shape, size distribution, mean size, number of particles per unit volume, and growth (and shrinkage) rates of various sizes in the size distribution. The variations of these microstructural parameters were analyzed in terms of existing models for the spheroidization process. The Lifshitz-Wagner analysis is shown to have limited applicability to the spheroidization of cementite in binary steels, since the required steady-state size distribution is not attained in times less than about 106 sec. An analysis similar to that of Lifshitz and Wagner, but requiring no specification of the shape of the size distribution, is shown to apply and indicates that the observed spheroidization was diffusion-controlled. The effective diffusion coefficient was between the values for the diffusion of carbon and iron in ferrite and approximated the coupled diffusion coefficients developed by Oriani and Li, Blakely, and Feingold.

Keywords

Ferrite Metallurgical Transaction Cementite Metallurgical Transaction Volume Effective Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner:Z. Electrochem., 1961, vol. 65, p. 581.Google Scholar
  2. 2.
    I. M. Lifshitz and V. V. Slyozov:Zh. Eksperim. i Teor. Fiz., 1958, vol. 35, p. 479.Google Scholar
  3. 3.
    I. M. Lifshitz and V. V. Slyozov:Fiz. Tverd. Tela, 1959, vol. 1, p. 1401.Google Scholar
  4. 4.
    I. M. Lifshitz and V. V. Slyozov:Phys. Chem. Solids, 1961, vol. 19, p. 35.CrossRefADSGoogle Scholar
  5. 5.
    O. Bannyh, H. Modin, and S. Modin:Jernkontorets Ann., 1962, vol. 146, p. 744.Google Scholar
  6. 6.
    R. W. Heckel:Trans. TMS-AIME, 1965, vol. 233, p. 1994.Google Scholar
  7. 7.
    R. W. Heckel and R. L. DeGregorio:Trans. TMS-AIME, 1965, vol. 233, p. 2001.Google Scholar
  8. 8.
    R. A. Oriani:Acta Met., 1964, vol. 12, p. 1399.CrossRefGoogle Scholar
  9. 9.
    R. A. Oriani:Acta Met., 1966, vol. 814, p. 84.CrossRefGoogle Scholar
  10. 10.
    Che-Yu Li, J. M. Blakley, and A. H. Feingold:Acta Met., 1966, vol. 14, p. 1397.CrossRefGoogle Scholar
  11. 11.
    R. P. Smith:Trans. TMS-AIME, 1962, vol. 224, p. 195.Google Scholar
  12. 12.
    R. J. Borg and D. Y. F. Lai:Acta Met., 1961, vol. 9, p. 434.CrossRefGoogle Scholar
  13. 13.
    G. P. Airey, T. A. Hughes, and R. F. Mehl:Trans. TMS-AIME, 1968, vol. 242, p. 1853.Google Scholar
  14. 14.
    R. T. DeHoff:Trans. TMS-AIME, 1962, vol. 224, p. 474.Google Scholar
  15. 15.
    C. S. Smith and L. Guttman:AIME Trans., 1953, vol. 197, p. 81.Google Scholar
  16. 16.
    H. A. Moreen:Metallography, 1969, vol. 1, p. 349.CrossRefGoogle Scholar
  17. 17.
    A. J. Ardell and R. B. Nicholson:J. Phys. Chem. Solids, 1966, vol. 27, p. 1793.CrossRefADSGoogle Scholar
  18. 18.
    C. A. Wert:AIME Trans., 1950, vol. 188, p. 1242.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1970

Authors and Affiliations

  • K. M. Vedula
    • 1
  • R. W. Heckel
    • 2
  1. 1.Department of Agricultural EngineeringCornell UniversityIthaca
  2. 2.Metallurgical EngineeringDrexel Institute of TechnologyUSA

Personalised recommendations