Skip to main content
Log in

On current-field identities

О ток-полевых тождествах

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The spectral representation for the vacuum expectation value of the axial-vector-current commutator is used to discuss the current-field identities given byg A a αμ (x)=f πμϕα(x)+A αμ (x). Herea αμ (x) denotes the axial-vector-meson field,g A is a properly chosen normalization constant, and the pion field ϕα(x) is defined by the relation\(\partial ^\mu A_\mu ^\alpha (x) \equiv \widehat\varphi ^\alpha (x) = f_\pi m_\pi ^2 \varphi ^\alpha (x)\), whereA αμ (x) denotes the axial vector current. We find that

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

and that these expressions vanish if and only if the pion field ϕα(x) is a free field. We also note that

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (\mathop x\limits_r ),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

and that these expressions vanish if and only if the axial vector currentA αμ (x) is conserved. The consequences for canonical realizations of current-field identities and PCAC are given. We also find that the vacuum expectation value of the σ-term is nonvanishing unless the current is conserved and that a nonconserved charge cannot annihilate the vacuum (as stated by Coleman's theorem).

Riassunto

Si usa la rappresentazione spettrale del valore di aspettazione del vuoto per discuter e le identità corrente-campo date dag A a αμ (x)=f πμϕα(x)+A αμ (x). Quia αμ (x) denota il campo del mesone vettoriale assiale,g A è una costante di rinormalizzazione opportunamente scelta, ed il campo pionico ϕα(x) è definito dalla relazione\(\partial ^\mu A_\mu ^\alpha (x) \equiv \widehat\varphi ^\alpha (x) = f_\pi m_\pi ^2 \varphi ^\alpha (x)\), doveA αμ (x) denota la corrente vettoriale assiale. Si trova che

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

e che queste espressioni si annullano se e solo se il campo pionico ϕα(x) è un campo libero. Si nota anche che

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (\mathop x\limits_r ),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

e che queste espressioni si annullano se e solo se la corrente vettoriale assialeA αμ (x) è conservata. Si espongono le conseguenze per le realizzazioni canoniche delle identità corrente-campo e per PCAC. Si trova anche che il valore di aspettazione del vuoto del termine σ non tende a zero a meno che la corrente sia conservata e che una carica non conservata non possa annichilare il vuoto (come è affermato dal teorema di Coleman).

Резюме

Спектральное представление для вакуумной ожидаемой величины коммутатора аксиально-векторного тока используется для обсуждения ток-полевых тождеств, заданных соотношениемg A a αμ (x)=f πμϕα(x)+A αμ (x). Здесьa αμ (x) обозначает поле аксиально-векторного мезона,g A есть надлежашим образом выбранная перенормировочная постоянная; пионное поле ϕα(x) определяется соотношением\(\partial ^\mu A_\mu ^\alpha (x) \equiv \widehat\varphi ^\alpha (x) = f_\pi m_\pi ^2 \varphi ^\alpha (x)\), гдеA αμ (x) представляет аксиально-векторный ток. Мы получаем, что

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

и что эти выражения обрашаются в нуль, если и только если пионное поле ϕα(x) представляет свободное поле. Мы также отмечаем, что

$$\left\langle {\left[ {\frac{\partial }{{\partial x_k }}a_0^\alpha (\mathop x\limits_r ),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } = \left\langle {\left[ {\frac{\partial }{{\partial x_0 }}a_k^\alpha (x),\widehat\varphi {}^\beta (y)} \right]} \right\rangle _{x_0 = y_0 } \propto \delta ^{\alpha \beta } \frac{\partial }{{\partial x_k }}\delta (x - y)$$

и что эти выражения обращаются в нуль, если и только если аксиально-векторный токA αμ (x) сохраняется. Приводятся следствия для канонических реализаций токполевых тождеств и РСАС. Мы также находим, что вакуумная ожидаемая величина σ-члена не обращается в нуль, если ток не сохраняется, и что несохраняющийся заряд не может уничтожить вакуум (как утверждается теоремой Колемана).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. R. Arnowitt, P. Nath andM. H. Friedman:Phys. Rev. Lett.,22, 1158 (1969);P. Nath, R. Arnowitt andM. H. Friedman:Veneziano amplitude, current algebra and vertex functions, preprint, Northeastern University, Boston.

    Article  ADS  Google Scholar 

  2. T. D. Lee andB. Zumino:Phys. Rev.,163, 1667 (1967);J. Wess andB. Zumino:Phys. Rev.,163, 1727 (1967), and references therein.

    Article  ADS  Google Scholar 

  3. R. Arnowitt, M. H. Friedman andP. Nath:Nucl. Phys.,10 B, 578 (1969), and references therein.

    Article  ADS  Google Scholar 

  4. R. Acharya, P. Narayanaswamy andT. S. Santhanam:A rigorous lower bound on the KSFR relation from field theory, Internal Report IC/69/63, ICTP, Trieste.

  5. Statement II has been partly derived inH. Genz:Zeits. Phys.,229, 206 (1369).

    Article  Google Scholar 

  6. It also follows from this (ref. (5)H. Genz:Zeits. Phys.,229, 206 (1369)) that the σ-term has a nonvanishing vacuum expectation value and thus a nonconserved charge cannot annihilate the vacuum as stated by Coleman's theorem (ref. (7) ).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Coleman:Phys. Lett.,19, 144 (1965);Journ. Math. Phys.,7, 787 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  8. T. D. Lee, S. Weinberg andB. Zumino:Phys. Rev. Lett.,18, 1029 (1967).

    Article  ADS  Google Scholar 

  9. K. G. Wilson:Phys. Rev.,179, 1499 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  10. P. De Mottoni andH. Genz:Nuovo Cimento,67 B, 1 (1970). In the meantime, it was derived thatE 1 has a nonvanishing VEV:P. De Mottoni andH. Genz:On logarithmic behavior in short-distance field products, preprint.

    Article  ADS  Google Scholar 

  11. For a proof seeR. Jost:Properties of Wightman Functions, inLectures on Field Theory and the Many-Body Problem, edited byE. R. Caianello (New York, 1961).

  12. Clearly, ifj π(0)|Ω〉 vanishes then 〈z|j π(0)|Ω〉 vanishes and thus due to analyticity 〈z 1|j π(0)|z 2〉 also vanishes. However, even though it would still follow that 〈z|j π(0)|Ω〉 is small if ‖j π(0)Ω‖ is small (since all intermediate states given a positive contribution to ‖j π(0)Ω‖) it would no longer necessarily follow that 〈z 1|j π(0)|Z 2〉 is small. The only possible conclusion seems to be that for a particlez that can decay strongly an approximate one-particle saturation implies a relatively long lifetime, since the decay is described by the matrix clement |〈z|j z(0)|Ω〉|, which is small if ‖j z(0)Ω‖ is small.

  13. S. Weinberg:Phys. Rev. Lett.,18, 507 (1967). (Although in this reference the Weinberg sum rules were both formulated and derived for conserved currents only, one could use the Jacobi identity as in ref. (13)S. L. Glashow, H. J. Schnitzer andS. Weinberg:Phys. Rev. Lett.,19, 139 (1967) to obtain these sum rules also for nonconserved currents if one makes some assumptions about equal-time commutators and double commutators.)

    Article  ADS  Google Scholar 

  14. S. L. Glashow, H. J. Schnitzer andS. Weinberg:Phys. Rev. Lett.,19, 139 (1967);R. Jackiw:Phys. Lett.,27 B, 96 (1968);H. Genz:Spectral Function Sum Rules from Identities of the Jacobi Type, inBoulder Lectures in Theoretical Physics 1969, to be published.

    Article  ADS  Google Scholar 

  15. (K. Pohlmeyer:Commun. Math. Phys.,12, 204 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  16. We assume that all the equal-time limits considered exist so that we may interchange limiting producedures (differentiation, equal-time limits) with the mass intergration in the spectral representations. For a general discussion of equal-time limits and their possible nonexistence in perturbation theory we refer the reader to ref. (17).

    Article  ADS  Google Scholar 

  17. J. Katz andJ. Langerholc:Phys. Rev.,184, 1577 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the DAAD through a NATO grant and in part by the U.S. Atomic Energy Commission.

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genz, H., Katz, J. On current-field identities. Nuovo Cimento A (1965-1970) 70, 1–11 (1970). https://doi.org/10.1007/BF02819160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02819160

Keywords

Navigation